MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnei Structured version   Visualization version   GIF version

Theorem pnfnei 21822
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 23408 (which describes neighborhoods of ) and mnfnei 21823, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 21819 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem pnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2821 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2821 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 21815 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2904 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 21567 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴))
7 elun 4125 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4125 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2821 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5823 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3500 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 mnfxr 10692 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
1312a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ ∈ ℝ*)
14 simprl 769 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ∈ ℝ*)
15 0xr 10682 . . . . . . . . . . . . . 14 0 ∈ ℝ*
16 ifcl 4511 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
1714, 15, 16sylancl 588 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
18 pnfxr 10689 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ ℝ*)
20 xrmax1 12562 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2115, 14, 20sylancr 589 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
22 ge0gtmnf 12559 . . . . . . . . . . . . . 14 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
2317, 21, 22syl2anc 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
24 simpll 765 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ 𝑢)
25 simprr 771 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢 = (𝑦(,]+∞))
2624, 25eleqtrd 2915 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ (𝑦(,]+∞))
27 elioc1 12774 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2814, 18, 27sylancl 588 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2926, 28mpbid 234 . . . . . . . . . . . . . . 15 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞))
3029simp2d 1139 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 < +∞)
31 0ltpnf 12511 . . . . . . . . . . . . . 14 0 < +∞
32 breq1 5062 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑦 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
33 breq1 5062 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 𝑦, 0) → (0 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
3432, 33ifboth 4505 . . . . . . . . . . . . . 14 ((𝑦 < +∞ ∧ 0 < +∞) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
3530, 31, 34sylancl 588 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
36 xrre2 12557 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < +∞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
3713, 17, 19, 23, 35, 36syl32anc 1374 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
38 xrmax2 12563 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
3915, 14, 38sylancr 589 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
40 df-ioc 12737 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
41 xrlelttr 12543 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < 𝑥) → 𝑦 < 𝑥))
4240, 40, 41ixxss1 12750 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
4314, 39, 42syl2anc 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
44 simplr 767 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢𝐴)
4525, 44eqsstrrd 4006 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (𝑦(,]+∞) ⊆ 𝐴)
4643, 45sstrd 3977 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴)
47 oveq1 7157 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑥(,]+∞) = (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞))
4847sseq1d 3998 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴))
4948rspcev 3623 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5037, 46, 49syl2anc 586 . . . . . . . . . . 11 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5150rexlimdvaa 3285 . . . . . . . . . 10 ((+∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5251com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5311, 52sylbi 219 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
54 eqid 2821 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
5554elrnmpt 5823 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
5655elv 3500 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
57 pnfnlt 12517 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
58 elico1 12775 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
5912, 58mpan 688 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
60 simp3 1134 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦) → +∞ < 𝑦)
6159, 60syl6bi 255 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) → +∞ < 𝑦))
6257, 61mtod 200 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ ∈ (-∞[,)𝑦))
63 eleq2 2901 . . . . . . . . . . . . . 14 (𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (-∞[,)𝑦)))
6463notbid 320 . . . . . . . . . . . . 13 (𝑢 = (-∞[,)𝑦) → (¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ (-∞[,)𝑦)))
6562, 64syl5ibrcom 249 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢))
6665rexlimiv 3280 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢)
6766pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6867adantrd 494 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6956, 68sylbi 219 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
7053, 69jaoi 853 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
718, 70sylbi 219 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
72 pnfnre 10676 . . . . . . . . . 10 +∞ ∉ ℝ
7372neli 3125 . . . . . . . . 9 ¬ +∞ ∈ ℝ
74 elssuni 4861 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
75 unirnioo 12831 . . . . . . . . . . 11 ℝ = ran (,)
7674, 75sseqtrrdi 4018 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
7776sseld 3966 . . . . . . . . 9 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → +∞ ∈ ℝ))
7873, 77mtoi 201 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢)
7978pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8079adantrd 494 . . . . . 6 (𝑢 ∈ ran (,) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8171, 80jaoi 853 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
827, 81sylbi 219 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8382rexlimiv 3280 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
846, 83syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
855, 84sylanb 583 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  Vcvv 3495  cun 3934  wss 3936  ifcif 4467   cuni 4832   class class class wbr 5059  cmpt 5139  ran crn 5551  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732  (,]cioc 12733  [,)cico 12734  topGenctg 16705  ordTopcordt 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-bases 21548
This theorem is referenced by:  xrge0tsms  23436  xrlimcnp  25540  xrge0tsmsd  30687  pnfneige0  31189  xlimpnfvlem2  42110
  Copyright terms: Public domain W3C validator