Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnfneige0 Structured version   Visualization version   GIF version

Theorem pnfneige0 29776
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. See pnfnei 20934. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypothesis
Ref Expression
pnfneige0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
Assertion
Ref Expression
pnfneige0 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem pnfneige0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0red 9985 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ 𝑦 < 0) → 0 ∈ ℝ)
2 simpllr 798 . . . 4 (((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) ∧ ¬ 𝑦 < 0) → 𝑦 ∈ ℝ)
31, 2ifclda 4092 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → if(𝑦 < 0, 0, 𝑦) ∈ ℝ)
4 rexr 10029 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5 0xr 10030 . . . . . . . 8 0 ∈ ℝ*
65a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → 0 ∈ ℝ*)
7 pnfxr 10036 . . . . . . . 8 +∞ ∈ ℝ*
87a1i 11 . . . . . . 7 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
9 iocinif 29384 . . . . . . 7 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
104, 6, 8, 9syl3anc 1323 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦(,]+∞) ∩ (0(,]+∞)) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞)))
11 ovif 6690 . . . . . 6 (if(𝑦 < 0, 0, 𝑦)(,]+∞) = if(𝑦 < 0, (0(,]+∞), (𝑦(,]+∞))
1210, 11syl6reqr 2674 . . . . 5 (𝑦 ∈ ℝ → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
1312ad2antlr 762 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) = ((𝑦(,]+∞) ∩ (0(,]+∞)))
14 iocssicc 12203 . . . . . 6 (0(,]+∞) ⊆ (0[,]+∞)
15 sslin 3817 . . . . . 6 ((0(,]+∞) ⊆ (0[,]+∞) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
1614, 15mp1i 13 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ ((𝑦(,]+∞) ∩ (0[,]+∞)))
17 simpr 477 . . . . . 6 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
18 ssin 3813 . . . . . . . 8 (((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)) ↔ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
1918biimpri 218 . . . . . . 7 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → ((𝑦(,]+∞) ⊆ 𝐴 ∧ (𝑦(,]+∞) ⊆ (0(,]+∞)))
2019simpld 475 . . . . . 6 ((𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)) → (𝑦(,]+∞) ⊆ 𝐴)
21 ssinss1 3819 . . . . . 6 ((𝑦(,]+∞) ⊆ 𝐴 → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2217, 20, 213syl 18 . . . . 5 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0[,]+∞)) ⊆ 𝐴)
2316, 22sstrd 3593 . . . 4 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ((𝑦(,]+∞) ∩ (0(,]+∞)) ⊆ 𝐴)
2413, 23eqsstrd 3618 . . 3 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴)
25 oveq1 6611 . . . . 5 (𝑥 = if(𝑦 < 0, 0, 𝑦) → (𝑥(,]+∞) = (if(𝑦 < 0, 0, 𝑦)(,]+∞))
2625sseq1d 3611 . . . 4 (𝑥 = if(𝑦 < 0, 0, 𝑦) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴))
2726rspcev 3295 . . 3 ((if(𝑦 < 0, 0, 𝑦) ∈ ℝ ∧ (if(𝑦 < 0, 0, 𝑦)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
283, 24, 27syl2anc 692 . 2 ((((𝐴𝐽 ∧ +∞ ∈ 𝐴) ∧ 𝑦 ∈ ℝ) ∧ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
29 letopon 20919 . . . . . . . . . 10 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
30 iccssxr 12198 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
31 resttopon 20875 . . . . . . . . . 10 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
3229, 30, 31mp2an 707 . . . . . . . . 9 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
3332topontopi 20646 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top
3433a1i 11 . . . . . . 7 (𝐴𝐽 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top)
35 ovex 6632 . . . . . . . 8 (0(,]+∞) ∈ V
3635a1i 11 . . . . . . 7 (𝐴𝐽 → (0(,]+∞) ∈ V)
37 pnfneige0.j . . . . . . . . . 10 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
38 xrge0topn 29768 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
3937, 38eqtri 2643 . . . . . . . . 9 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4039eleq2i 2690 . . . . . . . 8 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4140biimpi 206 . . . . . . 7 (𝐴𝐽𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
42 elrestr 16010 . . . . . . 7 ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Top ∧ (0(,]+∞) ∈ V ∧ 𝐴 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))) → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
4334, 36, 41, 42syl3anc 1323 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)))
44 letop 20920 . . . . . . 7 (ordTop‘ ≤ ) ∈ Top
45 ovex 6632 . . . . . . 7 (0[,]+∞) ∈ V
46 restabs 20879 . . . . . . 7 (((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4744, 14, 45, 46mp3an 1421 . . . . . 6 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t (0(,]+∞)) = ((ordTop‘ ≤ ) ↾t (0(,]+∞))
4843, 47syl6eleq 2708 . . . . 5 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞)))
4944a1i 11 . . . . . 6 (𝐴𝐽 → (ordTop‘ ≤ ) ∈ Top)
50 iocpnfordt 20929 . . . . . . 7 (0(,]+∞) ∈ (ordTop‘ ≤ )
5150a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ∈ (ordTop‘ ≤ ))
52 ssid 3603 . . . . . . 7 (0(,]+∞) ⊆ (0(,]+∞)
5352a1i 11 . . . . . 6 (𝐴𝐽 → (0(,]+∞) ⊆ (0(,]+∞))
54 inss2 3812 . . . . . . 7 (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞)
5554a1i 11 . . . . . 6 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))
56 restopnb 20889 . . . . . 6 ((((ordTop‘ ≤ ) ∈ Top ∧ (0(,]+∞) ∈ V) ∧ ((0(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ⊆ (0(,]+∞) ∧ (𝐴 ∩ (0(,]+∞)) ⊆ (0(,]+∞))) → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5749, 36, 51, 53, 55, 56syl23anc 1330 . . . . 5 (𝐴𝐽 → ((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ↔ (𝐴 ∩ (0(,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0(,]+∞))))
5848, 57mpbird 247 . . . 4 (𝐴𝐽 → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
5958adantr 481 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → (𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
60 simpr 477 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ 𝐴)
61 0ltpnf 11900 . . . . . 6 0 < +∞
62 ubioc1 12169 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
635, 7, 61, 62mp3an 1421 . . . . 5 +∞ ∈ (0(,]+∞)
6463a1i 11 . . . 4 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (0(,]+∞))
6560, 64elind 3776 . . 3 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → +∞ ∈ (𝐴 ∩ (0(,]+∞)))
66 pnfnei 20934 . . 3 (((𝐴 ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝐴 ∩ (0(,]+∞))) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6759, 65, 66syl2anc 692 . 2 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑦 ∈ ℝ (𝑦(,]+∞) ⊆ (𝐴 ∩ (0(,]+∞)))
6828, 67r19.29a 3071 1 ((𝐴𝐽 ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186  cin 3554  wss 3555  ifcif 4058   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  (,]cioc 12118  [,]cicc 12120  s cress 15782  t crest 16002  TopOpenctopn 16003  ordTopcordt 16080  *𝑠cxrs 16081  Topctop 20617  TopOnctopon 20618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-tset 15881  df-ple 15882  df-ds 15885  df-rest 16004  df-topn 16005  df-topgen 16025  df-ordt 16082  df-xrs 16083  df-ps 17121  df-tsr 17122  df-top 20621  df-bases 20622  df-topon 20623
This theorem is referenced by:  lmxrge0  29777
  Copyright terms: Public domain W3C validator