MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnlt Structured version   Visualization version   GIF version

Theorem pnfnlt 12175
Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
pnfnlt (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)

Proof of Theorem pnfnlt
StepHypRef Expression
1 pnfnre 10293 . . . . . . 7 +∞ ∉ ℝ
21neli 3037 . . . . . 6 ¬ +∞ ∈ ℝ
32intnanr 999 . . . . 5 ¬ (+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ)
43intnanr 999 . . . 4 ¬ ((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴)
5 pnfnemnf 10306 . . . . . 6 +∞ ≠ -∞
65neii 2934 . . . . 5 ¬ +∞ = -∞
76intnanr 999 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 = +∞)
84, 7pm3.2ni 935 . . 3 ¬ (((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞))
92intnanr 999 . . . 4 ¬ (+∞ ∈ ℝ ∧ 𝐴 = +∞)
106intnanr 999 . . . 4 ¬ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)
119, 10pm3.2ni 935 . . 3 ¬ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ))
128, 11pm3.2ni 935 . 2 ¬ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))
13 pnfxr 10304 . . 3 +∞ ∈ ℝ*
14 ltxr 12162 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1513, 14mpan 708 . 2 (𝐴 ∈ ℝ* → (+∞ < 𝐴 ↔ ((((+∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ +∞ < 𝐴) ∨ (+∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((+∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (+∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
1612, 15mtbiri 316 1 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cr 10147   < cltrr 10152  +∞cpnf 10283  -∞cmnf 10284  *cxr 10285   < clt 10286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291
This theorem is referenced by:  pnfge  12177  xrltnsym  12183  xrlttr  12186  qbtwnxr  12244  xltnegi  12260  xmullem2  12308  xrinfmexpnf  12349  xrsupsslem  12350  xrinfmsslem  12351  xrub  12355  supxrpnf  12361  supxrunb1  12362  supxrunb2  12363  xrinf0  12381  lt6abl  18516  pnfnei  21246  metdstri  22875  esumpcvgval  30470  icorempt2  33528  iooelexlt  33539  iccpartigtl  41887
  Copyright terms: Public domain W3C validator