![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pnfnre2 | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
pnfnre2 | ⊢ ¬ +∞ ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10273 | . 2 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3037 | 1 ⊢ ¬ +∞ ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2139 ℝcr 10127 +∞cpnf 10263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-nel 3036 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 df-uni 4589 df-pnf 10268 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |