Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Structured version   Visualization version   GIF version

Theorem pnonsingN 35740
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
pnonsingN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
31, 22polssN 35722 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ (𝑃‘(𝑃𝑋)))
4 ssrin 3981 . . . 4 (𝑋 ⊆ (𝑃‘(𝑃𝑋)) → (𝑋 ∩ (𝑃𝑋)) ⊆ ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)))
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)))
6 eqid 2760 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
7 eqid 2760 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
86, 1, 7, 22polvalN 35721 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃‘(𝑃𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
9 eqid 2760 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
106, 9, 1, 7, 2polval2N 35713 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
118, 10ineq12d 3958 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
12 hlop 35170 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1312adantr 472 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
14 hlclat 35166 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
15 eqid 2760 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1615, 1atssbase 35098 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
17 sstr 3752 . . . . . . . . 9 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1816, 17mpan2 709 . . . . . . . 8 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1915, 6clatlubcl 17333 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
2014, 18, 19syl2an 495 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
21 eqid 2760 . . . . . . . 8 (meet‘𝐾) = (meet‘𝐾)
22 eqid 2760 . . . . . . . 8 (0.‘𝐾) = (0.‘𝐾)
2315, 9, 21, 22opnoncon 35016 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2413, 20, 23syl2anc 696 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) = (0.‘𝐾))
2524fveq2d 6357 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ((pmap‘𝐾)‘(0.‘𝐾)))
26 simpl 474 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2715, 9opoccl 35002 . . . . . . 7 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2813, 20, 27syl2anc 696 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
2915, 21, 1, 7pmapmeet 35580 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
3026, 20, 28, 29syl3anc 1477 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))))
31 hlatl 35168 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3231adantr 472 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ AtLat)
3322, 7pmap0 35572 . . . . . 6 (𝐾 ∈ AtLat → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3432, 33syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘(0.‘𝐾)) = ∅)
3525, 30, 343eqtr3d 2802 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) = ∅)
3611, 35eqtrd 2794 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((𝑃‘(𝑃𝑋)) ∩ (𝑃𝑋)) = ∅)
375, 36sseqtrd 3782 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) ⊆ ∅)
38 ss0b 4116 . 2 ((𝑋 ∩ (𝑃𝑋)) ⊆ ∅ ↔ (𝑋 ∩ (𝑃𝑋)) = ∅)
3937, 38sylib 208 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cin 3714  wss 3715  c0 4058  cfv 6049  (class class class)co 6814  Basecbs 16079  occoc 16171  lubclub 17163  meetcmee 17166  0.cp0 17258  CLatccla 17328  OPcops 34980  Atomscatm 35071  AtLatcal 35072  HLchlt 35158  pmapcpmap 35304  𝑃cpolN 35709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-undef 7569  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-pmap 35311  df-polarityN 35710
This theorem is referenced by:  osumcllem4N  35766  pexmidN  35776  pexmidlem1N  35777
  Copyright terms: Public domain W3C validator