MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2a Structured version   Visualization version   GIF version

Theorem pntibndlem2a 26165
Description: Lemma for pntibndlem2 26166. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pntibndlem2a ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Distinct variable groups:   𝑢,𝑎,𝑥,𝐸   𝑢,𝐿,𝑥   𝑁,𝑎,𝑢,𝑥   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥   𝑢,𝑅,𝑥   𝑢,𝑍,𝑥   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑎)   𝐵(𝑥,𝑢,𝑎)   𝐶(𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑢,𝑎)   𝐿(𝑎)   𝑍(𝑎)

Proof of Theorem pntibndlem2a
StepHypRef Expression
1 pntibndlem2.10 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 11652 . . 3 (𝜑𝑁 ∈ ℝ)
3 1red 10641 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 ioossre 12797 . . . . . . 7 (0(,)1) ⊆ ℝ
5 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntibndlem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
7 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
85, 6, 7pntibndlem1 26164 . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
94, 8sseldi 3964 . . . . . 6 (𝜑𝐿 ∈ ℝ)
10 pntibndlem3.4 . . . . . . 7 (𝜑𝐸 ∈ (0(,)1))
114, 10sseldi 3964 . . . . . 6 (𝜑𝐸 ∈ ℝ)
129, 11remulcld 10670 . . . . 5 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
133, 12readdcld 10669 . . . 4 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
1413, 2remulcld 10670 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
15 elicc2 12800 . . 3 ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
162, 14, 15syl2anc 586 . 2 (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
1716biimpa 479 1 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  3c3 11692  4c4 11693  +crp 12388  (,)cioo 12737  [,]cicc 12740  abscabs 14592  expce 15414  logclog 25137  ψcchp 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-rp 12389  df-ioo 12741  df-icc 12744
This theorem is referenced by:  pntibndlem2  26166
  Copyright terms: Public domain W3C validator