MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem2a Structured version   Visualization version   GIF version

Theorem pntibndlem2a 25179
Description: Lemma for pntibndlem2 25180. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem2.10 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
pntibndlem2a ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Distinct variable groups:   𝑢,𝑎,𝑥,𝐸   𝑢,𝐿,𝑥   𝑁,𝑎,𝑢,𝑥   𝑢,𝐴,𝑥   𝑢,𝐶,𝑥   𝑢,𝑅,𝑥   𝑢,𝑍,𝑥   𝜑,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐴(𝑎)   𝐵(𝑥,𝑢,𝑎)   𝐶(𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑢,𝑎)   𝐿(𝑎)   𝑍(𝑎)

Proof of Theorem pntibndlem2a
StepHypRef Expression
1 pntibndlem2.10 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 10979 . . 3 (𝜑𝑁 ∈ ℝ)
3 1red 9999 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 ioossre 12177 . . . . . . 7 (0(,)1) ⊆ ℝ
5 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntibndlem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
7 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
85, 6, 7pntibndlem1 25178 . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
94, 8sseldi 3581 . . . . . 6 (𝜑𝐿 ∈ ℝ)
10 pntibndlem3.4 . . . . . . 7 (𝜑𝐸 ∈ (0(,)1))
114, 10sseldi 3581 . . . . . 6 (𝜑𝐸 ∈ ℝ)
129, 11remulcld 10014 . . . . 5 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
133, 12readdcld 10013 . . . 4 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
1413, 2remulcld 10014 . . 3 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ)
15 elicc2 12180 . . 3 ((𝑁 ∈ ℝ ∧ ((1 + (𝐿 · 𝐸)) · 𝑁) ∈ ℝ) → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
162, 14, 15syl2anc 692 . 2 (𝜑 → (𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁)) ↔ (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))))
1716biimpa 501 1 ((𝜑𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁𝑢𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  3c3 11015  4c4 11016  +crp 11776  (,)cioo 12117  [,]cicc 12120  abscabs 13908  expce 14717  logclog 24205  ψcchp 24719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-rp 11777  df-ioo 12121  df-icc 12124
This theorem is referenced by:  pntibndlem2  25180
  Copyright terms: Public domain W3C validator