MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibndlem3 Structured version   Visualization version   GIF version

Theorem pntibndlem3 25262
Description: Lemma for pntibnd 25263. Package up pntibndlem2 25261 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypotheses
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntibndlem1.1 (𝜑𝐴 ∈ ℝ+)
pntibndlem1.l 𝐿 = ((1 / 4) / (𝐴 + 3))
pntibndlem3.2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntibndlem3.3 (𝜑𝐵 ∈ ℝ+)
pntibndlem3.k 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
pntibndlem3.c 𝐶 = ((2 · 𝐵) + (log‘2))
pntibndlem3.4 (𝜑𝐸 ∈ (0(,)1))
pntibndlem3.6 (𝜑𝑍 ∈ ℝ+)
pntibndlem3.5 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
Assertion
Ref Expression
pntibndlem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Distinct variable groups:   𝑖,𝑎,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧,𝐸   𝑢,𝐿,𝑣,𝑥,𝑧   𝑢,𝐴,𝑣,𝑥   𝑢,𝐶,𝑣,𝑥,𝑦   𝑅,𝑖,𝑘,𝑚,𝑢,𝑣,𝑥,𝑦,𝑧   𝑚,𝐾   𝑘,𝑍,𝑚,𝑢,𝑣,𝑥,𝑦   𝜑,𝑘,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑣,𝑖,𝑚,𝑎)   𝐴(𝑦,𝑧,𝑖,𝑘,𝑚,𝑎)   𝐵(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑚,𝑎)   𝐶(𝑧,𝑖,𝑘,𝑚,𝑎)   𝑅(𝑎)   𝐾(𝑥,𝑦,𝑧,𝑣,𝑢,𝑖,𝑘,𝑎)   𝐿(𝑦,𝑖,𝑘,𝑚,𝑎)   𝑍(𝑧,𝑖,𝑎)

Proof of Theorem pntibndlem3
Dummy variables 𝑛 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11075 . . 3 2 ∈ ℝ
2 1le2 11226 . . 3 1 ≤ 2
3 chpdifbnd 25225 . . 3 ((2 ∈ ℝ ∧ 1 ≤ 2) → ∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
41, 2, 3mp2an 707 . 2 𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣))))
5 simpr 477 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → 𝑡 ∈ ℝ+)
6 ioossre 12220 . . . . . . . . . . . . 13 (0(,)1) ⊆ ℝ
7 pntibndlem3.4 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (0(,)1))
86, 7sseldi 3593 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
9 eliooord 12218 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
107, 9syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
1110simpld 475 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
128, 11elrpd 11854 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
1312adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ+)
14 4nn 11172 . . . . . . . . . . 11 4 ∈ ℕ
15 nnrp 11827 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1614, 15ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
17 rpdivcl 11841 . . . . . . . . . 10 ((𝐸 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
1813, 16, 17sylancl 693 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 4) ∈ ℝ+)
195, 18rpdivcld 11874 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ+)
2019rpred 11857 . . . . . . 7 ((𝜑𝑡 ∈ ℝ+) → (𝑡 / (𝐸 / 4)) ∈ ℝ)
2120rpefcld 14816 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ+)
22 pntibndlem3.6 . . . . . . 7 (𝜑𝑍 ∈ ℝ+)
2322adantr 481 . . . . . 6 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ+)
2421, 23rpaddcld 11872 . . . . 5 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
2524adantrr 752 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+)
26 elioore 12190 . . . . . . . . . 10 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → 𝑦 ∈ ℝ)
2726ad2antll 764 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ ℝ)
2823rpred 11857 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 ∈ ℝ)
2928adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ)
3020reefcld 14799 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝑡 / (𝐸 / 4))) ∈ ℝ)
3130, 28readdcld 10054 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
3231adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ)
3328, 21ltaddrp2d 11891 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ+) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
3433adantr 481 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍))
35 eliooord 12218 . . . . . . . . . . . 12 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦𝑦 < +∞))
3635simpld 475 . . . . . . . . . . 11 (𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
3736ad2antll 764 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) < 𝑦)
3829, 32, 27, 34, 37lttrd 10183 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 < 𝑦)
3929rexrd 10074 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑍 ∈ ℝ*)
40 elioopnf 12252 . . . . . . . . . 10 (𝑍 ∈ ℝ* → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
4139, 40syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑦 ∈ (𝑍(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑍 < 𝑦)))
4227, 38, 41mpbir2and 956 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
4342adantlrr 756 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → 𝑦 ∈ (𝑍(,)+∞))
44 pntibndlem3.c . . . . . . . . . . . . . . . . 17 𝐶 = ((2 · 𝐵) + (log‘2))
45 pntibndlem3.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ+)
4645adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ+)
4746rpred 11857 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℝ)
48 remulcl 10006 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
491, 47, 48sylancr 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ)
50 2rp 11822 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
51 relogcl 24303 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℝ
53 readdcl 10004 . . . . . . . . . . . . . . . . . 18 (((2 · 𝐵) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
5449, 52, 53sylancl 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) + (log‘2)) ∈ ℝ)
5544, 54syl5eqel 2703 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → 𝐶 ∈ ℝ)
5655, 13rerpdivcld 11888 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) ∈ ℝ)
5756reefcld 14799 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
58 elicopnf 12254 . . . . . . . . . . . . . 14 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
5957, 58syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ+) → (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝑘 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝑘)))
6059simprbda 652 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝑘 ∈ ℝ)
6160rehalfcld 11264 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ ℝ)
62 pntibndlem3.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / (𝐸 / 2)))
6313rphalfcld 11869 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐸 / 2) ∈ ℝ+)
6447, 63rerpdivcld 11888 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℝ)
6564reefcld 14799 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
66 remulcl 10006 . . . . . . . . . . . . . . . 16 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 2 ∈ ℝ) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6765, 1, 66sylancl 693 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6867adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ∈ ℝ)
6957adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
7064recnd 10053 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) ∈ ℂ)
7152recni 10037 . . . . . . . . . . . . . . . . . 18 (log‘2) ∈ ℂ
72 efadd 14805 . . . . . . . . . . . . . . . . . 18 (((𝐵 / (𝐸 / 2)) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
7370, 71, 72sylancl 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))))
74 reeflog 24308 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ+ → (exp‘(log‘2)) = 2)
7550, 74ax-mp 5 . . . . . . . . . . . . . . . . . 18 (exp‘(log‘2)) = 2
7675oveq2i 6646 . . . . . . . . . . . . . . . . 17 ((exp‘(𝐵 / (𝐸 / 2))) · (exp‘(log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2)
7773, 76syl6eq 2670 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) = ((exp‘(𝐵 / (𝐸 / 2))) · 2))
7852a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℝ)
79 rerpdivcl 11846 . . . . . . . . . . . . . . . . . . . 20 (((log‘2) ∈ ℝ ∧ 𝐸 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8052, 13, 79sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 𝐸) ∈ ℝ)
8171div1i 10738 . . . . . . . . . . . . . . . . . . . 20 ((log‘2) / 1) = (log‘2)
8210simprd 479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 < 1)
8382adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → 𝐸 < 1)
848adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ∈ ℝ)
85 1re 10024 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
86 ltle 10111 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 → 𝐸 ≤ 1))
8784, 85, 86sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 < 1 → 𝐸 ≤ 1))
8883, 87mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → 𝐸 ≤ 1)
8913rpregt0d 11863 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
90 1rp 11821 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ+
91 rpregt0 11831 . . . . . . . . . . . . . . . . . . . . . . 23 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
9290, 91mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (1 ∈ ℝ ∧ 0 < 1))
93 1lt2 11179 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
94 rplogcl 24331 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
951, 93, 94mp2an 707 . . . . . . . . . . . . . . . . . . . . . . 23 (log‘2) ∈ ℝ+
96 rpregt0 11831 . . . . . . . . . . . . . . . . . . . . . . 23 ((log‘2) ∈ ℝ+ → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
98 lediv2 10898 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
9989, 92, 97, 98syl3anc 1324 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ≤ 1 ↔ ((log‘2) / 1) ≤ ((log‘2) / 𝐸)))
10088, 99mpbid 222 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((log‘2) / 1) ≤ ((log‘2) / 𝐸))
10181, 100syl5eqbrr 4680 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ≤ ((log‘2) / 𝐸))
10278, 80, 64, 101leadd2dd 10627 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
10344oveq1i 6645 . . . . . . . . . . . . . . . . . . . 20 (𝐶 / 𝐸) = (((2 · 𝐵) + (log‘2)) / 𝐸)
10449recnd 10053 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) ∈ ℂ)
10571a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (log‘2) ∈ ℂ)
106 rpcnne0 11835 . . . . . . . . . . . . . . . . . . . . . 22 (𝐸 ∈ ℝ+ → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
10713, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divdir 10695 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝐵) ∈ ℂ ∧ (log‘2) ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
109104, 105, 107, 108syl3anc 1324 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) + (log‘2)) / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
110103, 109syl5eq 2666 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)))
1111recni 10037 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
11247recnd 10053 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ+) → 𝐵 ∈ ℂ)
113 mulcom 10007 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 · 2))
114111, 112, 113sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 · 𝐵) = (𝐵 · 2))
115114oveq1d 6650 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = ((𝐵 · 2) / 𝐸))
116 rpcnne0 11835 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
11750, 116mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
118 divdiv2 10722 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℂ ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
119112, 107, 117, 118syl3anc 1324 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ+) → (𝐵 / (𝐸 / 2)) = ((𝐵 · 2) / 𝐸))
120115, 119eqtr4d 2657 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ℝ+) → ((2 · 𝐵) / 𝐸) = (𝐵 / (𝐸 / 2)))
121120oveq1d 6650 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ℝ+) → (((2 · 𝐵) / 𝐸) + ((log‘2) / 𝐸)) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
122110, 121eqtrd 2654 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → (𝐶 / 𝐸) = ((𝐵 / (𝐸 / 2)) + ((log‘2) / 𝐸)))
123102, 122breqtrrd 4672 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸))
124 readdcl 10004 . . . . . . . . . . . . . . . . . . 19 (((𝐵 / (𝐸 / 2)) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
12564, 52, 124sylancl 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ ℝ+) → ((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ)
126 efle 14829 . . . . . . . . . . . . . . . . . 18 ((((𝐵 / (𝐸 / 2)) + (log‘2)) ∈ ℝ ∧ (𝐶 / 𝐸) ∈ ℝ) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
127125, 56, 126syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ ℝ+) → (((𝐵 / (𝐸 / 2)) + (log‘2)) ≤ (𝐶 / 𝐸) ↔ (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸))))
128123, 127mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ ℝ+) → (exp‘((𝐵 / (𝐸 / 2)) + (log‘2))) ≤ (exp‘(𝐶 / 𝐸)))
12977, 128eqbrtrrd 4668 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ ℝ+) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
130129adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ (exp‘(𝐶 / 𝐸)))
13159simplbda 653 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝑘)
13268, 69, 60, 130, 131letrd 10179 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘)
13365adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ)
134 rpregt0 11831 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (2 ∈ ℝ ∧ 0 < 2))
13550, 134mp1i 13 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (2 ∈ ℝ ∧ 0 < 2))
136 lemuldiv 10888 . . . . . . . . . . . . . 14 (((exp‘(𝐵 / (𝐸 / 2))) ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
137133, 60, 135, 136syl3anc 1324 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (((exp‘(𝐵 / (𝐸 / 2))) · 2) ≤ 𝑘 ↔ (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2)))
138132, 137mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐵 / (𝐸 / 2))) ≤ (𝑘 / 2))
13962, 138syl5eqbr 4679 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ≤ (𝑘 / 2))
14062, 133syl5eqel 2703 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → 𝐾 ∈ ℝ)
141 elicopnf 12254 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
142140, 141syl 17 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → ((𝑘 / 2) ∈ (𝐾[,)+∞) ↔ ((𝑘 / 2) ∈ ℝ ∧ 𝐾 ≤ (𝑘 / 2))))
14361, 139, 142mpbir2and 956 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ+) ∧ 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (𝑘 / 2) ∈ (𝐾[,)+∞))
144143adantrr 752 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ+) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
145144adantlrr 756 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → (𝑘 / 2) ∈ (𝐾[,)+∞))
146 pntibndlem3.5 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
147146ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
148 oveq1 6642 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 / 2) → (𝑚 · 𝑣) = ((𝑘 / 2) · 𝑣))
149148breq2d 4656 . . . . . . . . . . . . 13 (𝑚 = (𝑘 / 2) → (𝑖 ≤ (𝑚 · 𝑣) ↔ 𝑖 ≤ ((𝑘 / 2) · 𝑣)))
150149anbi2d 739 . . . . . . . . . . . 12 (𝑚 = (𝑘 / 2) → ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ↔ (𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣))))
151150anbi1d 740 . . . . . . . . . . 11 (𝑚 = (𝑘 / 2) → (((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
152151rexbidv 3048 . . . . . . . . . 10 (𝑚 = (𝑘 / 2) → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
153152ralbidv 2983 . . . . . . . . 9 (𝑚 = (𝑘 / 2) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
154153rspcv 3300 . . . . . . . 8 ((𝑘 / 2) ∈ (𝐾[,)+∞) → (∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2))))
155145, 147, 154sylc 65 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)))
156 breq2 4648 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑣 < 𝑖𝑣 < 𝑛))
157 breq1 4647 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑖 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑣)))
158156, 157anbi12d 746 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣))))
159 fveq2 6178 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
160 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑛𝑖 = 𝑛)
161159, 160oveq12d 6653 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((𝑅𝑖) / 𝑖) = ((𝑅𝑛) / 𝑛))
162161fveq2d 6182 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (abs‘((𝑅𝑖) / 𝑖)) = (abs‘((𝑅𝑛) / 𝑛)))
163162breq1d 4654 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2) ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
164158, 163anbi12d 746 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
165164cbvrexv 3167 . . . . . . . . 9 (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
166 breq1 4647 . . . . . . . . . . . 12 (𝑣 = 𝑦 → (𝑣 < 𝑛𝑦 < 𝑛))
167 oveq2 6643 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → ((𝑘 / 2) · 𝑣) = ((𝑘 / 2) · 𝑦))
168167breq2d 4656 . . . . . . . . . . . 12 (𝑣 = 𝑦 → (𝑛 ≤ ((𝑘 / 2) · 𝑣) ↔ 𝑛 ≤ ((𝑘 / 2) · 𝑦)))
169166, 168anbi12d 746 . . . . . . . . . . 11 (𝑣 = 𝑦 → ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ↔ (𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦))))
170169anbi1d 740 . . . . . . . . . 10 (𝑣 = 𝑦 → (((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
171170rexbidv 3048 . . . . . . . . 9 (𝑣 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
172165, 171syl5bb 272 . . . . . . . 8 (𝑣 = 𝑦 → (∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) ↔ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
173172rspcv 3300 . . . . . . 7 (𝑦 ∈ (𝑍(,)+∞) → (∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖𝑖 ≤ ((𝑘 / 2) · 𝑣)) ∧ (abs‘((𝑅𝑖) / 𝑖)) ≤ (𝐸 / 2)) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))
17443, 155, 173sylc 65 . . . . . 6 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
175 pntibnd.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
176 pntibndlem1.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
177176ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐴 ∈ ℝ+)
178 pntibndlem1.l . . . . . . . 8 𝐿 = ((1 / 4) / (𝐴 + 3))
179 pntibndlem3.2 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
180 fveq2 6178 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝑅𝑥) = (𝑅𝑣))
181 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑣𝑥 = 𝑣)
182180, 181oveq12d 6653 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑣) / 𝑣))
183182fveq2d 6182 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑣) / 𝑣)))
184183breq1d 4654 . . . . . . . . . . 11 (𝑥 = 𝑣 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴))
185184cbvralv 3166 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
186179, 185sylib 208 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
187186ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ ℝ+ (abs‘((𝑅𝑣) / 𝑣)) ≤ 𝐴)
18845ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐵 ∈ ℝ+)
1897ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝐸 ∈ (0(,)1))
19022ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑍 ∈ ℝ+)
191 simprrl 803 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑛 ∈ ℕ)
192 simplrl 799 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑡 ∈ ℝ+)
193 simplrr 800 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))
194 eqid 2620 . . . . . . . 8 ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)
195 simprll 801 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
196 simprlr 802 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
197 simprrr 804 . . . . . . . 8 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))
198175, 177, 178, 187, 188, 62, 44, 189, 190, 191, 192, 193, 194, 195, 196, 197pntibndlem2 25261 . . . . . . 7 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ ((𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2))))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
199198anassrs 679 . . . . . 6 ((((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) ∧ (𝑛 ∈ ℕ ∧ ((𝑦 < 𝑛𝑛 ≤ ((𝑘 / 2) · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝐸 / 2)))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
200174, 199rexlimddv 3031 . . . . 5 (((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) ∧ (𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ∧ 𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))) → ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
201200ralrimivva 2968 . . . 4 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
202 oveq1 6642 . . . . . . 7 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (𝑥(,)+∞) = (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞))
203202raleqdv 3139 . . . . . 6 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
204203ralbidv 2983 . . . . 5 (𝑥 = ((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) → (∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸) ↔ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
205204rspcev 3304 . . . 4 ((((exp‘(𝑡 / (𝐸 / 4))) + 𝑍) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (((exp‘(𝑡 / (𝐸 / 4))) + 𝑍)(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
20625, 201, 205syl2anc 692 . . 3 ((𝜑 ∧ (𝑡 ∈ ℝ+ ∧ ∀𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
207206rexlimdvaa 3028 . 2 (𝜑 → (∃𝑡 ∈ ℝ+𝑣 ∈ (1(,)+∞)∀𝑤 ∈ (𝑣[,](2 · 𝑣))((ψ‘𝑤) − (ψ‘𝑣)) ≤ ((2 · (𝑤𝑣)) + (𝑡 · (𝑣 / (log‘𝑣)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸)))
2084, 207mpi 20 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  +∞cpnf 10056  *cxr 10058   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  2c2 11055  3c3 11056  4c4 11057  +crp 11817  (,)cioo 12160  [,)cico 12162  [,]cicc 12163  abscabs 13955  expce 14773  logclog 24282  ψcchp 24800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-o1 14202  df-lo1 14203  df-sum 14398  df-ef 14779  df-e 14780  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cxp 24285  df-em 24700  df-cht 24804  df-vma 24805  df-chp 24806  df-ppi 24807  df-mu 24808
This theorem is referenced by:  pntibnd  25263
  Copyright terms: Public domain W3C validator