MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Visualization version   GIF version

Theorem pntlema 26166
Description: Lemma for pnt 26184. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
Assertion
Ref Expression
pntlema (𝜑𝑊 ∈ ℝ+)
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
2 pntlem1.y . . . . . 6 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
32simpld 497 . . . . 5 (𝜑𝑌 ∈ ℝ+)
4 4nn 11714 . . . . . . 7 4 ∈ ℕ
5 nnrp 12394 . . . . . . 7 (4 ∈ ℕ → 4 ∈ ℝ+)
64, 5ax-mp 5 . . . . . 6 4 ∈ ℝ+
7 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
8 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
9 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
10 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
11 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
12 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
137, 8, 9, 10, 11, 12pntlemd 26164 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1413simp1d 1138 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
15 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
16 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
17 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
18 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 26165 . . . . . . . 8 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2019simp1d 1138 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2114, 20rpmulcld 12441 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
22 rpdivcl 12408 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
236, 21, 22sylancr 589 . . . . 5 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
243, 23rpaddcld 12440 . . . 4 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
25 2z 12008 . . . 4 2 ∈ ℤ
26 rpexpcl 13442 . . . 4 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
2724, 25, 26sylancl 588 . . 3 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
28 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2928simpld 497 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
3019simp2d 1139 . . . . . . 7 (𝜑𝐾 ∈ ℝ+)
31 rpexpcl 13442 . . . . . . 7 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
3230, 25, 31sylancl 588 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℝ+)
3329, 32rpmulcld 12441 . . . . 5 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
34 4z 12010 . . . . 5 4 ∈ ℤ
35 rpexpcl 13442 . . . . 5 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
3633, 34, 35sylancl 588 . . . 4 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
37 3nn0 11909 . . . . . . . . . . 11 3 ∈ ℕ0
38 2nn 11704 . . . . . . . . . . 11 2 ∈ ℕ
3937, 38decnncl 12112 . . . . . . . . . 10 32 ∈ ℕ
40 nnrp 12394 . . . . . . . . . 10 (32 ∈ ℕ → 32 ∈ ℝ+)
4139, 40ax-mp 5 . . . . . . . . 9 32 ∈ ℝ+
42 rpmulcl 12406 . . . . . . . . 9 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
4341, 9, 42sylancr 589 . . . . . . . 8 (𝜑 → (32 · 𝐵) ∈ ℝ+)
4419simp3d 1140 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
4544simp3d 1140 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
46 rpexpcl 13442 . . . . . . . . . . 11 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4720, 25, 46sylancl 588 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℝ+)
4814, 47rpmulcld 12441 . . . . . . . . 9 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
4945, 48rpmulcld 12441 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
5043, 49rpdivcld 12442 . . . . . . 7 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
51 3rp 12389 . . . . . . . . 9 3 ∈ ℝ+
52 rpmulcl 12406 . . . . . . . . 9 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
5315, 51, 52sylancl 588 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ+)
54 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5553, 54rpaddcld 12440 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
5650, 55rpmulcld 12441 . . . . . 6 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
5756rpred 12425 . . . . 5 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
5857rpefcld 15452 . . . 4 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
5936, 58rpaddcld 12440 . . 3 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
6027, 59rpaddcld 12440 . 2 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+)
611, 60eqeltrid 2917 1 (𝜑𝑊 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  3c3 11687  4c4 11688  cz 11975  cdc 12092  +crp 12383  (,)cioo 12732  cexp 13423  expce 15409  ψcchp 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-ioo 12736  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415
This theorem is referenced by:  pntlemb  26167  pntleme  26178
  Copyright terms: Public domain W3C validator