MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Visualization version   GIF version

Theorem pntlema 25330
Description: Lemma for pnt 25348. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
Assertion
Ref Expression
pntlema (𝜑𝑊 ∈ ℝ+)
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
2 pntlem1.y . . . . . 6 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
32simpld 474 . . . . 5 (𝜑𝑌 ∈ ℝ+)
4 4nn 11225 . . . . . . 7 4 ∈ ℕ
5 nnrp 11880 . . . . . . 7 (4 ∈ ℕ → 4 ∈ ℝ+)
64, 5ax-mp 5 . . . . . 6 4 ∈ ℝ+
7 pntlem1.r . . . . . . . . 9 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
8 pntlem1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
9 pntlem1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
10 pntlem1.l . . . . . . . . 9 (𝜑𝐿 ∈ (0(,)1))
11 pntlem1.d . . . . . . . . 9 𝐷 = (𝐴 + 1)
12 pntlem1.f . . . . . . . . 9 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
137, 8, 9, 10, 11, 12pntlemd 25328 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1413simp1d 1093 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
15 pntlem1.u . . . . . . . . 9 (𝜑𝑈 ∈ ℝ+)
16 pntlem1.u2 . . . . . . . . 9 (𝜑𝑈𝐴)
17 pntlem1.e . . . . . . . . 9 𝐸 = (𝑈 / 𝐷)
18 pntlem1.k . . . . . . . . 9 𝐾 = (exp‘(𝐵 / 𝐸))
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 25329 . . . . . . . 8 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2019simp1d 1093 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2114, 20rpmulcld 11926 . . . . . 6 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
22 rpdivcl 11894 . . . . . 6 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
236, 21, 22sylancr 696 . . . . 5 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
243, 23rpaddcld 11925 . . . 4 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
25 2z 11447 . . . 4 2 ∈ ℤ
26 rpexpcl 12919 . . . 4 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
2724, 25, 26sylancl 695 . . 3 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
28 pntlem1.x . . . . . . 7 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
2928simpld 474 . . . . . 6 (𝜑𝑋 ∈ ℝ+)
3019simp2d 1094 . . . . . . 7 (𝜑𝐾 ∈ ℝ+)
31 rpexpcl 12919 . . . . . . 7 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
3230, 25, 31sylancl 695 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℝ+)
3329, 32rpmulcld 11926 . . . . 5 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
34 4z 11449 . . . . 5 4 ∈ ℤ
35 rpexpcl 12919 . . . . 5 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
3633, 34, 35sylancl 695 . . . 4 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
37 3nn0 11348 . . . . . . . . . . 11 3 ∈ ℕ0
38 2nn 11223 . . . . . . . . . . 11 2 ∈ ℕ
3937, 38decnncl 11556 . . . . . . . . . 10 32 ∈ ℕ
40 nnrp 11880 . . . . . . . . . 10 (32 ∈ ℕ → 32 ∈ ℝ+)
4139, 40ax-mp 5 . . . . . . . . 9 32 ∈ ℝ+
42 rpmulcl 11893 . . . . . . . . 9 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
4341, 9, 42sylancr 696 . . . . . . . 8 (𝜑 → (32 · 𝐵) ∈ ℝ+)
4419simp3d 1095 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
4544simp3d 1095 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
46 rpexpcl 12919 . . . . . . . . . . 11 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4720, 25, 46sylancl 695 . . . . . . . . . 10 (𝜑 → (𝐸↑2) ∈ ℝ+)
4814, 47rpmulcld 11926 . . . . . . . . 9 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
4945, 48rpmulcld 11926 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
5043, 49rpdivcld 11927 . . . . . . 7 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
51 3nn 11224 . . . . . . . . . 10 3 ∈ ℕ
52 nnrp 11880 . . . . . . . . . 10 (3 ∈ ℕ → 3 ∈ ℝ+)
5351, 52ax-mp 5 . . . . . . . . 9 3 ∈ ℝ+
54 rpmulcl 11893 . . . . . . . . 9 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
5515, 53, 54sylancl 695 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ+)
56 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5755, 56rpaddcld 11925 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
5850, 57rpmulcld 11926 . . . . . 6 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
5958rpred 11910 . . . . 5 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
6059rpefcld 14879 . . . 4 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
6136, 60rpaddcld 11925 . . 3 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
6227, 61rpaddcld 11925 . 2 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ∈ ℝ+)
631, 62syl5eqel 2734 1 (𝜑𝑊 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  cz 11415  cdc 11531  +crp 11870  (,)cioo 12213  cexp 12900  expce 14836  ψcchp 24864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-ioo 12217  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842
This theorem is referenced by:  pntlemb  25331  pntleme  25342
  Copyright terms: Public domain W3C validator