MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Structured version   Visualization version   GIF version

Theorem pntlemh 26169
Description: Lemma for pnt 26184. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemh ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
21simpld 497 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ+)
32adantr 483 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 ∈ ℝ+)
43relogcld 25200 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) ∈ ℝ)
5 pntlem1.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
6 pntlem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
7 pntlem1.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
8 pntlem1.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ (0(,)1))
9 pntlem1.d . . . . . . . . . . . 12 𝐷 = (𝐴 + 1)
10 pntlem1.f . . . . . . . . . . . 12 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
11 pntlem1.u . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ+)
12 pntlem1.u2 . . . . . . . . . . . 12 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . . 12 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . . 12 𝐾 = (exp‘(𝐵 / 𝐸))
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 26165 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1615simp2d 1139 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ+)
1716rpred 12425 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
1815simp3d 1140 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1918simp2d 1139 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
2017, 19rplogcld 25206 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ+)
2120adantr 483 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ+)
224, 21rerpdivcld 12456 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
23 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
24 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
27 pntlem1.m . . . . . . . . . 10 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
28 pntlem1.n . . . . . . . . . 10 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 26168 . . . . . . . . 9 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
3029simp1d 1138 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3130adantr 483 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ)
3231nnred 11647 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
33 elfzuz 12898 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
34 eluznn 12312 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
3530, 33, 34syl2an 597 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℕ)
3635nnred 11647 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℝ)
37 flltp1 13164 . . . . . . . 8 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3822, 37syl 17 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1))
3938, 27breqtrrdi 5100 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝑀)
40 elfzle1 12904 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝑀𝐽)
4140adantl 484 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑀𝐽)
4222, 32, 36, 39, 41ltletrd 10794 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑋) / (log‘𝐾)) < 𝐽)
434, 36, 21ltdivmul2d 12477 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑋) / (log‘𝐾)) < 𝐽 ↔ (log‘𝑋) < (𝐽 · (log‘𝐾))))
4442, 43mpbid 234 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (𝐽 · (log‘𝐾)))
4516adantr 483 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ+)
46 elfzelz 12902 . . . . . 6 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
4746adantl 484 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℤ)
48 relogexp 25173 . . . . 5 ((𝐾 ∈ ℝ+𝐽 ∈ ℤ) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
4945, 47, 48syl2anc 586 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘(𝐾𝐽)) = (𝐽 · (log‘𝐾)))
5044, 49breqtrrd 5086 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑋) < (log‘(𝐾𝐽)))
5145, 47rpexpcld 13602 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ∈ ℝ+)
52 logltb 25177 . . . 4 ((𝑋 ∈ ℝ+ ∧ (𝐾𝐽) ∈ ℝ+) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
533, 51, 52syl2anc 586 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ↔ (log‘𝑋) < (log‘(𝐾𝐽))))
5450, 53mpbird 259 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑋 < (𝐾𝐽))
5549oveq2d 7166 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · (log‘(𝐾𝐽))) = (2 · (𝐽 · (log‘𝐾))))
56 2z 12008 . . . . . . . 8 2 ∈ ℤ
57 relogexp 25173 . . . . . . . 8 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
5851, 56, 57sylancl 588 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = (2 · (log‘(𝐾𝐽))))
59 2cnd 11709 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℂ)
6036recnd 10663 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ∈ ℂ)
6145relogcld 25200 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℝ)
6261recnd 10663 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝐾) ∈ ℂ)
6359, 60, 62mulassd 10658 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) = (2 · (𝐽 · (log‘𝐾))))
6455, 58, 633eqtr4d 2866 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) = ((2 · 𝐽) · (log‘𝐾)))
65 elfzle2 12905 . . . . . . . . . . 11 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
6665adantl 484 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽𝑁)
6766, 28breqtrdi 5099 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)))
685, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 26167 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
6968simp1d 1138 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ+)
7069adantr 483 . . . . . . . . . . . . 13 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝑍 ∈ ℝ+)
7170relogcld 25200 . . . . . . . . . . . 12 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘𝑍) ∈ ℝ)
7271, 21rerpdivcld 12456 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
7372rehalfcld 11878 . . . . . . . . . 10 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
74 flge 13169 . . . . . . . . . 10 (((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ ∧ 𝐽 ∈ ℤ) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7573, 47, 74syl2anc 586 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2) ↔ 𝐽 ≤ (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))))
7667, 75mpbird 259 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
77 2re 11705 . . . . . . . . . 10 2 ∈ ℝ
7877a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 2 ∈ ℝ)
79 2pos 11734 . . . . . . . . . 10 0 < 2
8079a1i 11 . . . . . . . . 9 ((𝜑𝐽 ∈ (𝑀...𝑁)) → 0 < 2)
81 lemuldiv2 11515 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8236, 72, 78, 80, 81syl112anc 1370 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)) ↔ 𝐽 ≤ (((log‘𝑍) / (log‘𝐾)) / 2)))
8376, 82mpbird 259 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾)))
84 remulcl 10616 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (2 · 𝐽) ∈ ℝ)
8577, 36, 84sylancr 589 . . . . . . . 8 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (2 · 𝐽) ∈ ℝ)
8685, 71, 21lemuldivd 12474 . . . . . . 7 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍) ↔ (2 · 𝐽) ≤ ((log‘𝑍) / (log‘𝐾))))
8783, 86mpbird 259 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((2 · 𝐽) · (log‘𝐾)) ≤ (log‘𝑍))
8864, 87eqbrtrd 5080 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍))
89 rpexpcl 13442 . . . . . . 7 (((𝐾𝐽) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝐾𝐽)↑2) ∈ ℝ+)
9051, 56, 89sylancl 588 . . . . . 6 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ∈ ℝ+)
9190, 70logled 25204 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (((𝐾𝐽)↑2) ≤ 𝑍 ↔ (log‘((𝐾𝐽)↑2)) ≤ (log‘𝑍)))
9288, 91mpbird 259 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ 𝑍)
9370rprege0d 12432 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
94 resqrtth 14609 . . . . 5 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
9593, 94syl 17 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍)↑2) = 𝑍)
9692, 95breqtrrd 5086 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2))
9751rprege0d 12432 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)))
9870rpsqrtcld 14765 . . . . 5 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (√‘𝑍) ∈ ℝ+)
9998rprege0d 12432 . . . 4 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
100 le2sq 13493 . . . 4 ((((𝐾𝐽) ∈ ℝ ∧ 0 ≤ (𝐾𝐽)) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10197, 99, 100syl2anc 586 . . 3 ((𝜑𝐽 ∈ (𝑀...𝑁)) → ((𝐾𝐽) ≤ (√‘𝑍) ↔ ((𝐾𝐽)↑2) ≤ ((√‘𝑍)↑2)))
10296, 101mpbird 259 . 2 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐾𝐽) ≤ (√‘𝑍))
10354, 102jca 514 1 ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝐽) ∧ (𝐾𝐽) ≤ (√‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  3c3 11687  4c4 11688  cz 11975  cdc 12092  cuz 12237  +crp 12383  (,)cioo 12732  [,)cico 12734  ...cfz 12886  cfl 13154  cexp 13423  csqrt 14586  expce 15409  eceu 15410  logclog 25132  ψcchp 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-e 15416  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134
This theorem is referenced by:  pntlemr  26172  pntlemj  26173  pntlemi  26174  pntlemf  26175
  Copyright terms: Public domain W3C validator