MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemo Structured version   Visualization version   GIF version

Theorem pntlemo 25341
Description: Lemma for pnt 25348. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntlemo (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝑢,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑁   𝑢,𝑖,𝑦,𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑖,𝑌,𝑧   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐶(𝑦,𝑢,𝑖,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑖,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑖,𝑎)   𝐸(𝑖)   𝐹(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐾(𝑢,𝑖,𝑎)   𝐿(𝑖,𝑎)   𝑀(𝑦,𝑢,𝑖,𝑎)   𝑁(𝑦,𝑢,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑎)   𝑋(𝑢,𝑖,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑖,𝑎)

Proof of Theorem pntlemo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 25331 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1093 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181pntrf 25297 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1918ffvelrni 6398 . . . . . . . 8 (𝑍 ∈ ℝ+ → (𝑅𝑍) ∈ ℝ)
2017, 19syl 17 . . . . . . 7 (𝜑 → (𝑅𝑍) ∈ ℝ)
2120, 17rerpdivcld 11941 . . . . . 6 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℝ)
2221recnd 10106 . . . . 5 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℂ)
2322abscld 14219 . . . 4 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ∈ ℝ)
2417relogcld 24414 . . . 4 (𝜑 → (log‘𝑍) ∈ ℝ)
2523, 24remulcld 10108 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ∈ ℝ)
267rpred 11910 . . . . . 6 (𝜑𝑈 ∈ ℝ)
27 3re 11132 . . . . . . . 8 3 ∈ ℝ
2827a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℝ)
2924, 28readdcld 10107 . . . . . 6 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3026, 29remulcld 10108 . . . . 5 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℝ)
31 2re 11128 . . . . . . 7 2 ∈ ℝ
3231a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 25329 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3433simp3d 1095 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3534simp3d 1095 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
3635rpred 11910 . . . . . . . 8 (𝜑 → (𝑈𝐸) ∈ ℝ)
371, 2, 3, 4, 5, 6pntlemd 25328 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3837simp1d 1093 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3933simp1d 1093 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ+)
40 2z 11447 . . . . . . . . . . . 12 2 ∈ ℤ
41 rpexpcl 12919 . . . . . . . . . . . 12 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4239, 40, 41sylancl 695 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℝ+)
4338, 42rpmulcld 11926 . . . . . . . . . 10 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
44 3nn0 11348 . . . . . . . . . . . . 13 3 ∈ ℕ0
45 2nn 11223 . . . . . . . . . . . . 13 2 ∈ ℕ
4644, 45decnncl 11556 . . . . . . . . . . . 12 32 ∈ ℕ
47 nnrp 11880 . . . . . . . . . . . 12 (32 ∈ ℕ → 32 ∈ ℝ+)
4846, 47ax-mp 5 . . . . . . . . . . 11 32 ∈ ℝ+
49 rpmulcl 11893 . . . . . . . . . . 11 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
5048, 3, 49sylancr 696 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) ∈ ℝ+)
5143, 50rpdivcld 11927 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
5251rpred 11910 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ)
5336, 52remulcld 10108 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℝ)
5453, 24remulcld 10108 . . . . . 6 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℝ)
5532, 54remulcld 10108 . . . . 5 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
5630, 55resubcld 10496 . . . 4 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ∈ ℝ)
5713rpred 11910 . . . 4 (𝜑𝐶 ∈ ℝ)
5856, 57readdcld 10107 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ∈ ℝ)
597rpcnd 11912 . . . . . 6 (𝜑𝑈 ∈ ℂ)
6053recnd 10106 . . . . . 6 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℂ)
6124recnd 10106 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
6259, 60, 61subdird 10525 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6338rpcnd 11912 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
6442rpcnd 11912 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
6550rpcnne0d 11919 . . . . . . . . . . 11 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
66 div23 10742 . . . . . . . . . . 11 ((𝐿 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
6763, 64, 65, 66syl3anc 1366 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
689oveq1i 6700 . . . . . . . . . . . 12 (𝐸↑2) = ((𝑈 / 𝐷)↑2)
6937simp2d 1094 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
7069rpcnd 11912 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℂ)
7169rpne0d 11915 . . . . . . . . . . . . 13 (𝜑𝐷 ≠ 0)
7259, 70, 71sqdivd 13061 . . . . . . . . . . . 12 (𝜑 → ((𝑈 / 𝐷)↑2) = ((𝑈↑2) / (𝐷↑2)))
7368, 72syl5eq 2697 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) = ((𝑈↑2) / (𝐷↑2)))
7473oveq2d 6706 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · (𝐸↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
7538, 50rpdivcld 11927 . . . . . . . . . . . 12 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
7675rpcnd 11912 . . . . . . . . . . 11 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℂ)
7759sqcld 13046 . . . . . . . . . . 11 (𝜑 → (𝑈↑2) ∈ ℂ)
78 rpexpcl 12919 . . . . . . . . . . . . 13 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
7969, 40, 78sylancl 695 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℝ+)
8079rpcnne0d 11919 . . . . . . . . . . 11 (𝜑 → ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0))
81 divass 10741 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
82 div23 10742 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8381, 82eqtr3d 2687 . . . . . . . . . . 11 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8476, 77, 80, 83syl3anc 1366 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8567, 74, 843eqtrd 2689 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8685oveq2d 6706 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
87 df-3 11118 . . . . . . . . . . . . 13 3 = (2 + 1)
8887oveq2i 6701 . . . . . . . . . . . 12 (𝑈↑3) = (𝑈↑(2 + 1))
89 2nn0 11347 . . . . . . . . . . . . 13 2 ∈ ℕ0
90 expp1 12907 . . . . . . . . . . . . 13 ((𝑈 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9159, 89, 90sylancl 695 . . . . . . . . . . . 12 (𝜑 → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9288, 91syl5eq 2697 . . . . . . . . . . 11 (𝜑 → (𝑈↑3) = ((𝑈↑2) · 𝑈))
9377, 59mulcomd 10099 . . . . . . . . . . 11 (𝜑 → ((𝑈↑2) · 𝑈) = (𝑈 · (𝑈↑2)))
9492, 93eqtrd 2685 . . . . . . . . . 10 (𝜑 → (𝑈↑3) = (𝑈 · (𝑈↑2)))
9594oveq2d 6706 . . . . . . . . 9 (𝜑 → (𝐹 · (𝑈↑3)) = (𝐹 · (𝑈 · (𝑈↑2))))
9637simp3d 1095 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℝ+)
9796rpcnd 11912 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
9897, 59, 77mulassd 10101 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = (𝐹 · (𝑈 · (𝑈↑2))))
99 1cnd 10094 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
10069rpreccld 11920 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 𝐷) ∈ ℝ+)
101100rpcnd 11912 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 𝐷) ∈ ℂ)
10299, 101, 59subdird 10525 . . . . . . . . . . . . . 14 (𝜑 → ((1 − (1 / 𝐷)) · 𝑈) = ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)))
10359mulid2d 10096 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑈) = 𝑈)
10459, 70, 71divrec2d 10843 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 / 𝐷) = ((1 / 𝐷) · 𝑈))
1059, 104syl5req 2698 . . . . . . . . . . . . . . 15 (𝜑 → ((1 / 𝐷) · 𝑈) = 𝐸)
106103, 105oveq12d 6708 . . . . . . . . . . . . . 14 (𝜑 → ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)) = (𝑈𝐸))
107102, 106eqtr2d 2686 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝐸) = ((1 − (1 / 𝐷)) · 𝑈))
108107oveq1d 6705 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
1096oveq1i 6700 . . . . . . . . . . . . 13 (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈)
11099, 101subcld 10430 . . . . . . . . . . . . . 14 (𝜑 → (1 − (1 / 𝐷)) ∈ ℂ)
11175, 79rpdivcld 11927 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
112111rpcnd 11912 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℂ)
113110, 112, 59mul32d 10284 . . . . . . . . . . . . 13 (𝜑 → (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
114109, 113syl5eq 2697 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
115108, 114eqtr4d 2688 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (𝐹 · 𝑈))
116115oveq1d 6705 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝐹 · 𝑈) · (𝑈↑2)))
11735rpcnd 11912 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
118117, 112, 77mulassd 10101 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
119116, 118eqtr3d 2687 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12095, 98, 1193eqtr2d 2691 . . . . . . . 8 (𝜑 → (𝐹 · (𝑈↑3)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12186, 120eqtr4d 2688 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = (𝐹 · (𝑈↑3)))
122121oveq2d 6706 . . . . . 6 (𝜑 → (𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) = (𝑈 − (𝐹 · (𝑈↑3))))
123122oveq1d 6705 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12462, 123eqtr3d 2687 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12526, 24remulcld 10108 . . . . 5 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℝ)
126125, 54resubcld 10496 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
127124, 126eqeltrrd 2731 . . 3 (𝜑 → ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)) ∈ ℝ)
12817rpred 11910 . . . . . . . 8 (𝜑𝑍 ∈ ℝ)
12916simp2d 1094 . . . . . . . . 9 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
130129simp1d 1093 . . . . . . . 8 (𝜑 → 1 < 𝑍)
131128, 130rplogcld 24420 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ+)
13232, 131rerpdivcld 11941 . . . . . 6 (𝜑 → (2 / (log‘𝑍)) ∈ ℝ)
133 fzfid 12812 . . . . . . 7 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
13417adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
135 elfznn 12408 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
136135adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
137136nnrpd 11908 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
138134, 137rpdivcld 11927 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
13918ffvelrni 6398 . . . . . . . . . . . 12 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
141140, 134rerpdivcld 11941 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
142141recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
143142abscld 14219 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
144137relogcld 24414 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
145143, 144remulcld 10108 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
146133, 145fsumrecl 14509 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
147132, 146remulcld 10108 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
148147, 57readdcld 10107 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ∈ ℝ)
14920recnd 10106 . . . . . . . . . . 11 (𝜑 → (𝑅𝑍) ∈ ℂ)
150149abscld 14219 . . . . . . . . . 10 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℝ)
151150recnd 10106 . . . . . . . . 9 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℂ)
152151, 61mulcld 10098 . . . . . . . 8 (𝜑 → ((abs‘(𝑅𝑍)) · (log‘𝑍)) ∈ ℂ)
153132recnd 10106 . . . . . . . . 9 (𝜑 → (2 / (log‘𝑍)) ∈ ℂ)
154140recnd 10106 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
155154abscld 14219 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℝ)
156155, 144remulcld 10108 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
157133, 156fsumrecl 14509 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
158157recnd 10106 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
159153, 158mulcld 10098 . . . . . . . 8 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
16017rpcnd 11912 . . . . . . . 8 (𝜑𝑍 ∈ ℂ)
16117rpne0d 11915 . . . . . . . 8 (𝜑𝑍 ≠ 0)
162152, 159, 160, 161divsubdird 10878 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)))
163151, 61, 160, 161div23d 10876 . . . . . . . . 9 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
164149, 160, 161absdivd 14238 . . . . . . . . . . 11 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / (abs‘𝑍)))
16517rprege0d 11917 . . . . . . . . . . . . 13 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
166 absid 14080 . . . . . . . . . . . . 13 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → (abs‘𝑍) = 𝑍)
167165, 166syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘𝑍) = 𝑍)
168167oveq2d 6706 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝑅𝑍)) / (abs‘𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
169164, 168eqtrd 2685 . . . . . . . . . 10 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
170169oveq1d 6705 . . . . . . . . 9 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
171163, 170eqtr4d 2688 . . . . . . . 8 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)))
172153, 158, 160, 161divassd 10874 . . . . . . . . 9 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
173160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℂ)
174161adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ≠ 0)
175154, 173, 174absdivd 14238 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)))
176167adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘𝑍) = 𝑍)
177176oveq2d 6706 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
178175, 177eqtrd 2685 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
179178oveq1d 6705 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
180155recnd 10106 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ)
181144recnd 10106 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
18217rpcnne0d 11919 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
183182adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
184 div23 10742 . . . . . . . . . . . . . 14 (((abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
185180, 181, 183, 184syl3anc 1366 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
186179, 185eqtr4d 2688 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
187186sumeq2dv 14477 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
188156recnd 10106 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
189133, 160, 188, 161fsumdivc 14562 . . . . . . . . . . 11 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
190187, 189eqtr4d 2688 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
191190oveq2d 6706 . . . . . . . . 9 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
192172, 191eqtr4d 2688 . . . . . . . 8 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
193171, 192oveq12d 6708 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
194162, 193eqtrd 2685 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
195 1re 10077 . . . . . . . . 9 1 ∈ ℝ
196 rexr 10123 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℝ*)
197 elioopnf 12305 . . . . . . . . 9 (1 ∈ ℝ* → (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍)))
198195, 196, 197mp2b 10 . . . . . . . 8 (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍))
199128, 130, 198sylanbrc 699 . . . . . . 7 (𝜑𝑍 ∈ (1(,)+∞))
200 pntlem1.C . . . . . . 7 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
201 fveq2 6229 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (𝑅𝑧) = (𝑅𝑍))
202201fveq2d 6233 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (abs‘(𝑅𝑧)) = (abs‘(𝑅𝑍)))
203 fveq2 6229 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (log‘𝑧) = (log‘𝑍))
204202, 203oveq12d 6708 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((abs‘(𝑅𝑧)) · (log‘𝑧)) = ((abs‘(𝑅𝑍)) · (log‘𝑍)))
205203oveq2d 6706 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (2 / (log‘𝑧)) = (2 / (log‘𝑍)))
206 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑛 → (𝑧 / 𝑖) = (𝑧 / 𝑛))
207206fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑅‘(𝑧 / 𝑖)) = (𝑅‘(𝑧 / 𝑛)))
208207fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (abs‘(𝑅‘(𝑧 / 𝑖))) = (abs‘(𝑅‘(𝑧 / 𝑛))))
209 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
210208, 209oveq12d 6708 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → ((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))
211210cbvsumv 14470 . . . . . . . . . . . . 13 Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛))
212 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑍 → (𝑧 / 𝑌) = (𝑍 / 𝑌))
213212fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑧 = 𝑍 → (⌊‘(𝑧 / 𝑌)) = (⌊‘(𝑍 / 𝑌)))
214213oveq2d 6706 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (1...(⌊‘(𝑧 / 𝑌))) = (1...(⌊‘(𝑍 / 𝑌))))
215 simpl 472 . . . . . . . . . . . . . . . . . 18 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑧 = 𝑍)
216215oveq1d 6705 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑧 / 𝑛) = (𝑍 / 𝑛))
217216fveq2d 6233 . . . . . . . . . . . . . . . 16 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑧 / 𝑛)) = (𝑅‘(𝑍 / 𝑛)))
218217fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑧 / 𝑛))) = (abs‘(𝑅‘(𝑍 / 𝑛))))
219218oveq1d 6705 . . . . . . . . . . . . . 14 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
220214, 219sumeq12rdv 14482 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
221211, 220syl5eq 2697 . . . . . . . . . . . 12 (𝑧 = 𝑍 → Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
222205, 221oveq12d 6708 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖))) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))))
223204, 222oveq12d 6708 . . . . . . . . . 10 (𝑧 = 𝑍 → (((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) = (((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))))
224 id 22 . . . . . . . . . 10 (𝑧 = 𝑍𝑧 = 𝑍)
225223, 224oveq12d 6708 . . . . . . . . 9 (𝑧 = 𝑍 → ((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍))
226225breq1d 4695 . . . . . . . 8 (𝑧 = 𝑍 → (((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 ↔ ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶))
227226rspcv 3336 . . . . . . 7 (𝑍 ∈ (1(,)+∞) → (∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶))
228199, 200, 227sylc 65 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)
229194, 228eqbrtrrd 4709 . . . . 5 (𝜑 → (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶)
23025, 147, 57lesubadd2d 10664 . . . . 5 (𝜑 → ((((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶 ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶)))
231229, 230mpbid 222 . . . 4 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶))
232 2cnd 11131 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
233143recnd 10106 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℂ)
234233, 181mulcld 10098 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
235133, 234fsumcl 14508 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
236131rpne0d 11915 . . . . . . 7 (𝜑 → (log‘𝑍) ≠ 0)
237232, 235, 61, 236div23d 10876 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
23824resqcld 13075 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
23952, 238remulcld 10108 . . . . . . . . . . 11 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
24036, 239remulcld 10108 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
241 remulcl 10059 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
24231, 240, 241sylancr 696 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
24330, 24remulcld 10108 . . . . . . . . 9 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) ∈ ℝ)
244 remulcl 10059 . . . . . . . . . 10 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24531, 146, 244sylancr 696 . . . . . . . . 9 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24626adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
247246, 136nndivred 11107 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
248247, 143resubcld 10496 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
249248, 144remulcld 10108 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
250133, 249fsumrecl 14509 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
25132, 250remulcld 10108 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ∈ ℝ)
252243, 245resubcld 10496 . . . . . . . . . 10 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ∈ ℝ)
253 pntlem1.m . . . . . . . . . . . 12 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
254 pntlem1.n . . . . . . . . . . . 12 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
255 pntlem1.U . . . . . . . . . . . 12 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
256 pntlem1.K . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 253, 254, 255, 256pntlemf 25339 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
258 2pos 11150 . . . . . . . . . . . . 13 0 < 2
259258a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 2)
260 lemul2 10914 . . . . . . . . . . . 12 ((((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
261240, 250, 32, 259, 260syl112anc 1370 . . . . . . . . . . 11 (𝜑 → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
262257, 261mpbid 222 . . . . . . . . . 10 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
263247recnd 10106 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℂ)
264263, 233, 181subdird 10525 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
265264sumeq2dv 14477 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
266247, 144remulcld 10108 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
267266recnd 10106 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
268133, 267, 234fsumsub 14564 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
269265, 268eqtrd 2685 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
270269oveq2d 6706 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
271133, 266fsumrecl 14509 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
272271recnd 10106 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
273232, 272, 235subdid 10524 . . . . . . . . . . . 12 (𝜑 → (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
274270, 273eqtrd 2685 . . . . . . . . . . 11 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
275 remulcl 10059 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
27631, 271, 275sylancr 696 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
2771, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 253, 254, 255, 256pntlemk 25340 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
278276, 243, 245, 277lesub1dd 10681 . . . . . . . . . . 11 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
279274, 278eqbrtrd 4707 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
280242, 251, 252, 262, 279letrd 10232 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
281242, 243, 245, 280lesubd 10669 . . . . . . . 8 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
28230recnd 10106 . . . . . . . . . 10 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℂ)
28355recnd 10106 . . . . . . . . . 10 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℂ)
284282, 283, 61subdird 10525 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))))
28554recnd 10106 . . . . . . . . . . . 12 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℂ)
286232, 285, 61mulassd 10101 . . . . . . . . . . 11 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))))
28760, 61, 61mulassd 10101 . . . . . . . . . . . . 13 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28861sqvald 13045 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
289288oveq2d 6706 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
29051rpcnd 11912 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
291238recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
292117, 290, 291mulassd 10101 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
293287, 289, 2923eqtr2d 2691 . . . . . . . . . . . 12 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
294293oveq2d 6706 . . . . . . . . . . 11 (𝜑 → (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
295286, 294eqtrd 2685 . . . . . . . . . 10 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
296295oveq2d 6706 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
297284, 296eqtrd 2685 . . . . . . . 8 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
298281, 297breqtrrd 4713 . . . . . . 7 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)))
299245, 56, 131ledivmul2d 11964 . . . . . . 7 (𝜑 → (((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ↔ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍))))
300298, 299mpbird 247 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
301237, 300eqbrtrrd 4709 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
302147, 56, 57, 301leadd1dd 10679 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
30325, 148, 58, 231, 302letrd 10232 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
304 remulcl 10059 . . . . . . . . 9 ((𝑈 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑈 · 3) ∈ ℝ)
30526, 27, 304sylancl 695 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ)
306305, 57readdcld 10107 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ)
30716simp3d 1095 . . . . . . . 8 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
308307simp3d 1095 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
309306, 54, 125, 308leadd2dd 10680 . . . . . 6 (𝜑 → ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)) ≤ ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
31028recnd 10106 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
31159, 61, 310adddid 10102 . . . . . . . 8 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) = ((𝑈 · (log‘𝑍)) + (𝑈 · 3)))
312311oveq1d 6705 . . . . . . 7 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶))
313125recnd 10106 . . . . . . . 8 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℂ)
31459, 310mulcld 10098 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℂ)
31513rpcnd 11912 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
316313, 314, 315addassd 10100 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
317312, 316eqtrd 2685 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
3182852timesd 11313 . . . . . . . 8 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
319318oveq2d 6706 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
320313, 285, 285nppcan3d 10457 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
321319, 320eqtrd 2685 . . . . . 6 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
322309, 317, 3213brtr4d 4717 . . . . 5 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
32330, 57readdcld 10107 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ∈ ℝ)
324323, 55, 126lesubaddd 10662 . . . . 5 (𝜑 → ((((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ↔ ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))))
325322, 324mpbird 247 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
326282, 315, 283addsubd 10451 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
327325, 326, 1243brtr3d 4716 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
32825, 58, 127, 303, 327letrd 10232 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
329 3z 11448 . . . . . . 7 3 ∈ ℤ
330 rpexpcl 12919 . . . . . . 7 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑈↑3) ∈ ℝ+)
3317, 329, 330sylancl 695 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℝ+)
33296, 331rpmulcld 11926 . . . . 5 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ+)
333332rpred 11910 . . . 4 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ)
33426, 333resubcld 10496 . . 3 (𝜑 → (𝑈 − (𝐹 · (𝑈↑3))) ∈ ℝ)
33523, 334, 131lemul1d 11953 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))))
336328, 335mpbird 247 1 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  0cn0 11330  cz 11415  cdc 11531  +crp 11870  (,)cioo 12213  [,)cico 12215  [,]cicc 12216  ...cfz 12364  cfl 12631  cexp 12900  csqrt 14017  abscabs 14018  Σcsu 14460  expce 14836  eceu 14837  logclog 24346  ψcchp 24864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-em 24764  df-vma 24869  df-chp 24870
This theorem is referenced by:  pntleme  25342
  Copyright terms: Public domain W3C validator