MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemr Structured version   Visualization version   GIF version

Theorem pntlemr 26180
Description: Lemma for pntlemj 26181. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemr (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemr
StepHypRef Expression
1 pntlem1.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . . . . 13 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . . . . 13 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
71, 2, 3, 4, 5, 6pntlemd 26172 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
87simp1d 1138 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
9 pntlem1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ+)
10 pntlem1.u2 . . . . . . . . . . . . 13 (𝜑𝑈𝐴)
11 pntlem1.e . . . . . . . . . . . . 13 𝐸 = (𝑈 / 𝐷)
12 pntlem1.k . . . . . . . . . . . . 13 𝐾 = (exp‘(𝐵 / 𝐸))
131, 2, 3, 4, 5, 6, 9, 10, 11, 12pntlemc 26173 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1413simp1d 1138 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
158, 14rpmulcld 12450 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
16 4re 11724 . . . . . . . . . . 11 4 ∈ ℝ
17 4pos 11747 . . . . . . . . . . 11 0 < 4
1816, 17elrpii 12395 . . . . . . . . . 10 4 ∈ ℝ+
19 rpdivcl 12417 . . . . . . . . . 10 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2015, 18, 19sylancl 588 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2120rpred 12434 . . . . . . . 8 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ)
22 pntlem1.y . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
23 pntlem1.x . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
24 pntlem1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . . . 12 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑊[,)+∞))
271, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26pntlemb 26175 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2827simp1d 1138 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
29 pntlem1.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ+)
3028, 29rpdivcld 12451 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
3130rpred 12434 . . . . . . . 8 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
3221, 31remulcld 10673 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ)
33 pntlem1.i . . . . . . . . . 10 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
34 fzfid 13344 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3533, 34eqeltrid 2919 . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
36 hashcl 13720 . . . . . . . . 9 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
3735, 36syl 17 . . . . . . . 8 (𝜑 → (♯‘𝐼) ∈ ℕ0)
3837nn0red 11959 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℝ)
3932recnd 10671 . . . . . . . . . . . 12 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℂ)
40 1rp 12396 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
41 rpaddcl 12414 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4240, 15, 41sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4342, 29rpmulcld 12450 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
4428, 43rpdivcld 12451 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
4544rpred 12434 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
46 reflcl 13169 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4847recnd 10671 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℂ)
49 1cnd 10638 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5039, 48, 49add32d 10869 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) = (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
51 peano2re 10815 . . . . . . . . . . . . . 14 ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5232, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5352, 47readdcld 10672 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
54 reflcl 13169 . . . . . . . . . . . . . 14 ((𝑍 / 𝑉) ∈ ℝ → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
5531, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
56 peano2re 10815 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / 𝑉)) ∈ ℝ → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5815rphalfcld 12446 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ+)
5958, 30rpmulcld 12450 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ+)
6059rpred 12434 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ)
6160, 45readdcld 10672 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
62 rpdivcl 12417 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6318, 15, 62sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6463rpred 12434 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
6528rpsqrtcld 14773 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ∈ ℝ+)
6665rpred 12434 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ∈ ℝ)
6727simp3d 1140 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6867simp1d 1138 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
6943rpred 12434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
7013simp2d 1139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℝ+)
71 pntlem1.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ (𝑀..^𝑁))
72 elfzoelz 13041 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ ℤ)
7473peano2zd 12093 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ ℤ)
7570, 74rpexpcld 13611 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
7675rpred 12434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
77 pntlem1.V . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
7877simplrd 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
7970rpcnd 12436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ ℂ)
8070, 73rpexpcld 13611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐾𝐽) ∈ ℝ+)
8180rpcnd 12436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐾𝐽) ∈ ℂ)
8279, 81mulcomd 10664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
83 pntlem1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
84 pntlem1.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
851, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemg 26176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
8685simp1d 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ ℕ)
87 elfzouz 13045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
8871, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐽 ∈ (ℤ𝑀))
89 eluznn 12321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
9086, 88, 89syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐽 ∈ ℕ)
9190nnnn0d 11958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℕ0)
9279, 91expp1d 13514 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
9382, 92eqtr4d 2861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
9478, 93breqtrd 5094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
9569, 76, 94ltled 10790 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
96 fzofzp1 13137 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
9771, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
981, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 83, 84pntlemh 26177 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
9997, 98mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
10099simprd 498 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
10169, 76, 66, 95, 100letrd 10799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
10269, 66, 65lemul2d 12478 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
103101, 102mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
10428rprege0d 12441 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
105 remsqsqrt 14618 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
107103, 106breqtrd 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
10828rpred 12434 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑍 ∈ ℝ)
10966, 108, 43lemuldivd 12483 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
110107, 109mpbid 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
11129rpcnd 12436 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑉 ∈ ℂ)
112111mulid2d 10661 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) = 𝑉)
113 1red 10644 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℝ)
11442rpred 12434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
115 1re 10643 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
116 ltaddrp 12429 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ (𝐿 · 𝐸) ∈ ℝ+) → 1 < (1 + (𝐿 · 𝐸)))
117115, 15, 116sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < (1 + (𝐿 · 𝐸)))
118113, 114, 29, 117ltmul1dd 12489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) < ((1 + (𝐿 · 𝐸)) · 𝑉))
119112, 118eqbrtrrd 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉))
12029, 43, 28ltdiv2d 12457 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉) ↔ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉)))
121119, 120mpbid 234 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉))
12245, 31, 121ltled 10790 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉))
12366, 45, 31, 110, 122letrd 10799 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑉))
12464, 66, 31, 68, 123letrd 10799 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (𝑍 / 𝑉))
12564, 31, 31, 124leadd2dd 11257 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
12630rpcnd 12436 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 / 𝑉) ∈ ℂ)
1271262timesd 11883 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) = ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
128125, 127breqtrrd 5096 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)))
12931, 64readdcld 10672 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ∈ ℝ)
130 2re 11714 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
131 remulcl 10624 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ) → (2 · (𝑍 / 𝑉)) ∈ ℝ)
132130, 31, 131sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) ∈ ℝ)
133129, 132, 20lemul2d 12478 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉)))))
134128, 133mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
13520rpcnd 12436 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℂ)
13663rpcnd 12436 . . . . . . . . . . . . . . . . 17 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℂ)
137135, 126, 136adddid 10667 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))))
13815rpcnne0d 12443 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0))
139 rpcnne0 12410 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
14018, 139mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
141 divcan6 11349 . . . . . . . . . . . . . . . . . 18 ((((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
142138, 140, 141syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
143142oveq2d 7174 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
144137, 143eqtrd 2858 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
145 2cnd 11718 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
146135, 145, 126mulassd 10666 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
14715rpcnd 12436 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
148 2rp 12397 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
149 rpcnne0 12410 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
150148, 149mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
151 divdiv1 11353 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 · 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
152147, 150, 150, 151syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
153 2t2e4 11804 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
154153oveq2i 7169 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 · 𝐸) / (2 · 2)) = ((𝐿 · 𝐸) / 4)
155152, 154syl6req 2875 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 4) = (((𝐿 · 𝐸) / 2) / 2))
156155oveq1d 7173 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((((𝐿 · 𝐸) / 2) / 2) · 2))
157147halfcld 11885 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℂ)
158150simprd 498 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≠ 0)
159157, 145, 158divcan1d 11419 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐿 · 𝐸) / 2) / 2) · 2) = ((𝐿 · 𝐸) / 2))
160156, 159eqtrd 2858 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((𝐿 · 𝐸) / 2))
161160oveq1d 7173 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
162146, 161eqtr3d 2860 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
163134, 144, 1623brtr3d 5099 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ≤ (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
164 flle 13172 . . . . . . . . . . . . . . 15 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16545, 164syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16652, 47, 60, 45, 163, 165le2addd 11261 . . . . . . . . . . . . 13 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ≤ ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
16758rpred 12434 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ)
16842rprecred 12445 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℝ)
169167, 168readdcld 10672 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) ∈ ℝ)
17015rpred 12434 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
17114rpred 12434 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ)
1728rpred 12434 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ℝ)
173 eliooord 12799 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
1744, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0 < 𝐿𝐿 < 1))
175174simprd 498 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 < 1)
176172, 113, 14, 175ltmul1dd 12489 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
17714rpcnd 12436 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ ℂ)
178177mulid2d 10661 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 · 𝐸) = 𝐸)
179176, 178breqtrd 5094 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) < 𝐸)
18013simp3d 1140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
181180simp1d 1138 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ (0(,)1))
182 eliooord 12799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
183181, 182syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 < 𝐸𝐸 < 1))
184183simprd 498 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 < 1)
185170, 171, 113, 179, 184lttrd 10803 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) < 1)
186170, 113, 113, 185ltadd2dd 10801 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
187 df-2 11703 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
188186, 187breqtrrdi 5110 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
18942rpregt0d 12440 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))))
190130a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
191 2pos 11743 . . . . . . . . . . . . . . . . . . . 20 0 < 2
192191a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
19315rpregt0d 12440 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸)))
194 ltdiv2 11528 . . . . . . . . . . . . . . . . . . 19 ((((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))) ∧ (2 ∈ ℝ ∧ 0 < 2) ∧ ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸))) → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
195189, 190, 192, 193, 194syl121anc 1371 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
196188, 195mpbid 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
19742rpcnd 12436 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℂ)
19842rpcnne0d 12443 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0))
199 divsubdir 11336 . . . . . . . . . . . . . . . . . . 19 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
200197, 49, 198, 199syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
201 ax-1cn 10597 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
202 pncan2 10895 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
203201, 147, 202sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
204203oveq1d 7173 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
205 divid 11329 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
206198, 205syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
207206oveq1d 7173 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
208200, 204, 2073eqtr3d 2866 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
209196, 208breqtrd 5094 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸)))))
210167, 168, 113ltaddsubd 11242 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1 ↔ ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸))))))
211209, 210mpbird 259 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1)
212169, 113, 30, 211ltmul1dd 12489 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) < (1 · (𝑍 / 𝑉)))
213 reccl 11307 . . . . . . . . . . . . . . . . 17 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
214198, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
215157, 214, 126adddird 10668 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
216197, 111mulcomd 10664 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) = (𝑉 · (1 + (𝐿 · 𝐸))))
217216oveq2d 7174 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
21828rpcnd 12436 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
21929rpcnne0d 12443 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0))
220 divdiv1 11353 . . . . . . . . . . . . . . . . . 18 ((𝑍 ∈ ℂ ∧ (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
221218, 219, 198, 220syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
22242rpne0d 12439 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≠ 0)
223126, 197, 222divrec2d 11422 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
224217, 221, 2233eqtr2d 2864 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
225224oveq2d 7174 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
226215, 225eqtr4d 2861 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
227126mulid2d 10661 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑍 / 𝑉)) = (𝑍 / 𝑉))
228212, 226, 2273brtr3d 5099 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) < (𝑍 / 𝑉))
22953, 61, 31, 166, 228lelttrd 10800 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (𝑍 / 𝑉))
230 fllep1 13174 . . . . . . . . . . . . 13 ((𝑍 / 𝑉) ∈ ℝ → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23131, 230syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23253, 31, 57, 229, 231ltletrd 10802 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < ((⌊‘(𝑍 / 𝑉)) + 1))
23350, 232eqbrtrd 5090 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1))
23432, 47readdcld 10672 . . . . . . . . . . 11 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
235234, 55, 113ltadd1d 11235 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1)))
236233, 235mpbird 259 . . . . . . . . 9 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)))
23732, 47, 55ltaddsubd 11242 . . . . . . . . 9 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))))
238236, 237mpbid 234 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
23931flcld 13171 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
240 fzval3 13109 . . . . . . . . . . . 12 ((⌊‘(𝑍 / 𝑉)) ∈ ℤ → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
241239, 240syl 17 . . . . . . . . . . 11 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
24233, 241syl5eq 2870 . . . . . . . . . 10 (𝜑𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
243242fveq2d 6676 . . . . . . . . 9 (𝜑 → (♯‘𝐼) = (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))))
244 flword2 13186 . . . . . . . . . . . 12 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉)) → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24545, 31, 122, 244syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
246 eluzp1p1 12273 . . . . . . . . . . 11 ((⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
247245, 246syl 17 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
248 hashfzo 13793 . . . . . . . . . 10 (((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
249247, 248syl 17 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
25055recnd 10671 . . . . . . . . . 10 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℂ)
251250, 48, 49pnpcan2d 11037 . . . . . . . . 9 (𝜑 → (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
252243, 249, 2513eqtrd 2862 . . . . . . . 8 (𝜑 → (♯‘𝐼) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
253238, 252breqtrrd 5096 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < (♯‘𝐼))
25432, 38, 253ltled 10790 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼))
25521, 38, 30lemuldivd 12483 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (♯‘𝐼) ↔ ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉))))
256254, 255mpbid 234 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)))
25729rpred 12434 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ ℝ)
25869, 76, 66, 94, 100ltletrd 10802 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (√‘𝑍))
259257, 69, 66, 119, 258lttrd 10803 . . . . . . . . . . . . . . 15 (𝜑𝑉 < (√‘𝑍))
260257, 66, 259ltled 10790 . . . . . . . . . . . . . 14 (𝜑𝑉 ≤ (√‘𝑍))
26129rprege0d 12441 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉))
26265rprege0d 12441 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
263 le2sq 13502 . . . . . . . . . . . . . . 15 (((𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
264261, 262, 263syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
265260, 264mpbid 234 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ≤ ((√‘𝑍)↑2))
266 resqrtth 14617 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
267104, 266syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
268265, 267breqtrd 5094 . . . . . . . . . . . 12 (𝜑 → (𝑉↑2) ≤ 𝑍)
269 2z 12017 . . . . . . . . . . . . . . 15 2 ∈ ℤ
270 rpexpcl 13451 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑉↑2) ∈ ℝ+)
27129, 269, 270sylancl 588 . . . . . . . . . . . . . 14 (𝜑 → (𝑉↑2) ∈ ℝ+)
272271rpred 12434 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ∈ ℝ)
273272, 108, 28lemul2d 12478 . . . . . . . . . . . 12 (𝜑 → ((𝑉↑2) ≤ 𝑍 ↔ (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍)))
274268, 273mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍))
275218sqvald 13510 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) = (𝑍 · 𝑍))
276274, 275breqtrrd 5096 . . . . . . . . . 10 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍↑2))
277108resqcld 13614 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) ∈ ℝ)
278108, 277, 271lemuldivd 12483 . . . . . . . . . 10 (𝜑 → ((𝑍 · (𝑉↑2)) ≤ (𝑍↑2) ↔ 𝑍 ≤ ((𝑍↑2) / (𝑉↑2))))
279276, 278mpbid 234 . . . . . . . . 9 (𝜑𝑍 ≤ ((𝑍↑2) / (𝑉↑2)))
28029rpne0d 12439 . . . . . . . . . 10 (𝜑𝑉 ≠ 0)
281218, 111, 280sqdivd 13526 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) = ((𝑍↑2) / (𝑉↑2)))
282279, 281breqtrrd 5096 . . . . . . . 8 (𝜑𝑍 ≤ ((𝑍 / 𝑉)↑2))
283 rpexpcl 13451 . . . . . . . . . 10 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28430, 269, 283sylancl 588 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28528, 284logled 25212 . . . . . . . 8 (𝜑 → (𝑍 ≤ ((𝑍 / 𝑉)↑2) ↔ (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2))))
286282, 285mpbid 234 . . . . . . 7 (𝜑 → (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2)))
287 relogexp 25181 . . . . . . . 8 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
28830, 269, 287sylancl 588 . . . . . . 7 (𝜑 → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
289286, 288breqtrd 5094 . . . . . 6 (𝜑 → (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉))))
29028relogcld 25208 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
29130relogcld 25208 . . . . . . 7 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
292 ledivmul 11518 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
293290, 291, 190, 192, 292syl112anc 1370 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
294289, 293mpbird 259 . . . . 5 (𝜑 → ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)))
29520rprege0d 12441 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)))
29638, 30rerpdivcld 12465 . . . . . 6 (𝜑 → ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ)
29727simp2d 1139 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
298297simp1d 1138 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
299108, 298rplogcld 25214 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
300299rphalfcld 12446 . . . . . . 7 (𝜑 → ((log‘𝑍) / 2) ∈ ℝ+)
301300rprege0d 12441 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)))
302 lemul12a 11500 . . . . . 6 ((((((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)) ∧ ((♯‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ) ∧ ((((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)) ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ)) → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
303295, 296, 301, 291, 302syl22anc 836 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 4) ≤ ((♯‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
304256, 294, 303mp2and 697 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
305299rpcnd 12436 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
306 8nn 11735 . . . . . . . 8 8 ∈ ℕ
307 nnrp 12403 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℝ+)
308306, 307ax-mp 5 . . . . . . 7 8 ∈ ℝ+
309 rpcnne0 12410 . . . . . . 7 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
310308, 309mp1i 13 . . . . . 6 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
311 div23 11319 . . . . . 6 (((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0)) → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
312147, 305, 310, 311syl3anc 1367 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
313 divmuldiv 11342 . . . . . . 7 ((((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) ∧ ((4 ∈ ℂ ∧ 4 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
314147, 305, 140, 150, 313syl22anc 836 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
315 4t2e8 11808 . . . . . . 7 (4 · 2) = 8
316315oveq2i 7169 . . . . . 6 (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / 8)
317314, 316syl6req 2875 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
318312, 317eqtr3d 2860 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
31938recnd 10671 . . . . 5 (𝜑 → (♯‘𝐼) ∈ ℂ)
320291recnd 10671 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℂ)
32130rpcnne0d 12443 . . . . 5 (𝜑 → ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0))
322 divass 11318 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
323 div23 11319 . . . . . 6 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((♯‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
324322, 323eqtr3d 2860 . . . . 5 (((♯‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
325319, 320, 321, 324syl3anc 1367 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((♯‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
326304, 318, 3253brtr4d 5100 . . 3 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
327 rpdivcl 12417 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
32815, 308, 327sylancl 588 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
329328, 299rpmulcld 12450 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
330329rpred 12434 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
331291, 30rerpdivcld 12465 . . . . 5 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
33238, 331remulcld 10673 . . . 4 (𝜑 → ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
333180simp3d 1140 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
334330, 332, 333lemul2d 12478 . . 3 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ↔ ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))))
335326, 334mpbid 234 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
336333rpcnd 12436 . . 3 (𝜑 → (𝑈𝐸) ∈ ℂ)
337331recnd 10671 . . 3 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℂ)
338336, 319, 337mul12d 10851 . 2 (𝜑 → ((𝑈𝐸) · ((♯‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
339335, 338breqtrd 5094 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  4c4 11697  8c8 11701  0cn0 11900  cz 11984  cdc 12101  cuz 12246  +crp 12392  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  ...cfz 12895  ..^cfzo 13036  cfl 13163  cexp 13432  chash 13693  csqrt 14594  abscabs 14595  expce 15417  eceu 15418  logclog 25140  ψcchp 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-e 15424  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142
This theorem is referenced by:  pntlemj  26181
  Copyright terms: Public domain W3C validator