MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemr Structured version   Visualization version   GIF version

Theorem pntlemr 25008
Description: Lemma for pntlemj 25009. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.o 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝐽))))
pntlem1.v (𝜑𝑉 ∈ ℝ+)
pntlem1.V (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.j (𝜑𝐽 ∈ (𝑀..^𝑁))
pntlem1.i 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
Assertion
Ref Expression
pntlemr (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((#‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝐽   𝑦,𝑢,𝑧,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑂   𝑧,𝑁   𝑢,𝑅,𝑦,𝑧   𝑢,𝑉   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑧,𝑌   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑎)   𝐶(𝑦,𝑢,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑎)   𝐼(𝑦,𝑧,𝑢,𝑎)   𝐽(𝑢,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑂(𝑦,𝑢,𝑎)   𝑉(𝑦,𝑧,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemr
StepHypRef Expression
1 pntlem1.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . . . . 13 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . . . . 13 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
71, 2, 3, 4, 5, 6pntlemd 25000 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
87simp1d 1065 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
9 pntlem1.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ+)
10 pntlem1.u2 . . . . . . . . . . . . 13 (𝜑𝑈𝐴)
11 pntlem1.e . . . . . . . . . . . . 13 𝐸 = (𝑈 / 𝐷)
12 pntlem1.k . . . . . . . . . . . . 13 𝐾 = (exp‘(𝐵 / 𝐸))
131, 2, 3, 4, 5, 6, 9, 10, 11, 12pntlemc 25001 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1413simp1d 1065 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
158, 14rpmulcld 11720 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
16 4re 10944 . . . . . . . . . . 11 4 ∈ ℝ
17 4pos 10963 . . . . . . . . . . 11 0 < 4
1816, 17elrpii 11667 . . . . . . . . . 10 4 ∈ ℝ+
19 rpdivcl 11688 . . . . . . . . . 10 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 4 ∈ ℝ+) → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2015, 18, 19sylancl 692 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ+)
2120rpred 11704 . . . . . . . 8 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℝ)
22 pntlem1.y . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
23 pntlem1.x . . . . . . . . . . . 12 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
24 pntlem1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
25 pntlem1.w . . . . . . . . . . . 12 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
26 pntlem1.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝑊[,)+∞))
271, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26pntlemb 25003 . . . . . . . . . . 11 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2827simp1d 1065 . . . . . . . . . 10 (𝜑𝑍 ∈ ℝ+)
29 pntlem1.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℝ+)
3028, 29rpdivcld 11721 . . . . . . . . 9 (𝜑 → (𝑍 / 𝑉) ∈ ℝ+)
3130rpred 11704 . . . . . . . 8 (𝜑 → (𝑍 / 𝑉) ∈ ℝ)
3221, 31remulcld 9926 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ)
33 pntlem1.i . . . . . . . . . 10 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉)))
34 fzfid 12589 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ∈ Fin)
3533, 34syl5eqel 2691 . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
36 hashcl 12961 . . . . . . . . 9 (𝐼 ∈ Fin → (#‘𝐼) ∈ ℕ0)
3735, 36syl 17 . . . . . . . 8 (𝜑 → (#‘𝐼) ∈ ℕ0)
3837nn0red 11199 . . . . . . 7 (𝜑 → (#‘𝐼) ∈ ℝ)
3932recnd 9924 . . . . . . . . . . . 12 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℂ)
40 1rp 11668 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
41 rpaddcl 11686 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4240, 15, 41sylancr 693 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ+)
4342, 29rpmulcld 11720 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ+)
4428, 43rpdivcld 11721 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ+)
4544rpred 11704 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ)
46 reflcl 12414 . . . . . . . . . . . . . 14 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
4847recnd 9924 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℂ)
49 1cnd 9912 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5039, 48, 49add32d 10114 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) = (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
51 peano2re 10060 . . . . . . . . . . . . . 14 ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ∈ ℝ → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5232, 51syl 17 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ∈ ℝ)
5352, 47readdcld 9925 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
54 reflcl 12414 . . . . . . . . . . . . . 14 ((𝑍 / 𝑉) ∈ ℝ → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
5531, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℝ)
56 peano2re 10060 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / 𝑉)) ∈ ℝ → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ ℝ)
5815rphalfcld 11716 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ+)
5958, 30rpmulcld 11720 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ+)
6059rpred 11704 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) ∈ ℝ)
6160, 45readdcld 9925 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ∈ ℝ)
62 rpdivcl 11688 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6318, 15, 62sylancr 693 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
6463rpred 11704 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
6528rpsqrtcld 13944 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ∈ ℝ+)
6665rpred 11704 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ∈ ℝ)
6727simp3d 1067 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6867simp1d 1065 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
6943rpred 11704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ∈ ℝ)
7013simp2d 1066 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℝ+)
71 pntlem1.j . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ (𝑀..^𝑁))
72 elfzoelz 12294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ ℤ)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐽 ∈ ℤ)
7473peano2zd 11317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ ℤ)
7570, 74rpexpcld 12849 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ+)
7675rpred 11704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ∈ ℝ)
77 pntlem1.V . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
7877simpld 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝐾𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽))))
7978simprd 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾𝐽)))
8070rpcnd 11706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐾 ∈ ℂ)
8170, 73rpexpcld 12849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐾𝐽) ∈ ℝ+)
8281rpcnd 11706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐾𝐽) ∈ ℂ)
8380, 82mulcomd 9917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾 · (𝐾𝐽)) = ((𝐾𝐽) · 𝐾))
84 pntlem1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
85 pntlem1.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
861, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 84, 85pntlemg 25004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
8786simp1d 1065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑀 ∈ ℕ)
88 elfzouz 12298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
8971, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐽 ∈ (ℤ𝑀))
90 eluznn 11590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝐽 ∈ (ℤ𝑀)) → 𝐽 ∈ ℕ)
9187, 89, 90syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐽 ∈ ℕ)
9291nnnn0d 11198 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐽 ∈ ℕ0)
9380, 92expp1d 12826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐾↑(𝐽 + 1)) = ((𝐾𝐽) · 𝐾))
9483, 93eqtr4d 2646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐾 · (𝐾𝐽)) = (𝐾↑(𝐽 + 1)))
9579, 94breqtrd 4603 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾↑(𝐽 + 1)))
9669, 76, 95ltled 10036 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (𝐾↑(𝐽 + 1)))
97 fzofzp1 12386 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (𝑀..^𝑁) → (𝐽 + 1) ∈ (𝑀...𝑁))
9871, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐽 + 1) ∈ (𝑀...𝑁))
991, 2, 3, 4, 5, 6, 9, 10, 11, 12, 22, 23, 24, 25, 26, 84, 85pntlemh 25005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐽 + 1) ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
10098, 99mpdan 698 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋 < (𝐾↑(𝐽 + 1)) ∧ (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍)))
101100simprd 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐾↑(𝐽 + 1)) ≤ (√‘𝑍))
10269, 76, 66, 96, 101letrd 10045 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍))
10369, 66, 65lemul2d 11748 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1 + (𝐿 · 𝐸)) · 𝑉) ≤ (√‘𝑍) ↔ ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍))))
104102, 103mpbid 220 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ ((√‘𝑍) · (√‘𝑍)))
10528rprege0d 11711 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
106 remsqsqrt 13791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
108104, 107breqtrd 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍)
10928rpred 11704 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑍 ∈ ℝ)
11066, 109, 43lemuldivd 11753 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((√‘𝑍) · ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ 𝑍 ↔ (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
111108, 110mpbid 220 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑍) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
11229rpcnd 11706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑉 ∈ ℂ)
113112mulid2d 9914 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) = 𝑉)
114 1red 9911 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℝ)
11542rpred 11704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℝ)
116 1re 9895 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
117 ltaddrp 11699 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℝ ∧ (𝐿 · 𝐸) ∈ ℝ+) → 1 < (1 + (𝐿 · 𝐸)))
118116, 15, 117sylancr 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < (1 + (𝐿 · 𝐸)))
119114, 115, 29, 118ltmul1dd 11759 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 · 𝑉) < ((1 + (𝐿 · 𝐸)) · 𝑉))
120113, 119eqbrtrrd 4601 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉))
12129, 43, 28ltdiv2d 11727 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑉 < ((1 + (𝐿 · 𝐸)) · 𝑉) ↔ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉)))
122120, 121mpbid 220 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) < (𝑍 / 𝑉))
12345, 31, 122ltled 10036 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉))
12466, 45, 31, 111, 123letrd 10045 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑉))
12564, 66, 31, 68, 124letrd 10045 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (𝑍 / 𝑉))
12664, 31, 31, 125leadd2dd 10491 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
12730rpcnd 11706 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑍 / 𝑉) ∈ ℂ)
1281272timesd 11122 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) = ((𝑍 / 𝑉) + (𝑍 / 𝑉)))
129126, 128breqtrrd 4605 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)))
13031, 64readdcld 9925 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ∈ ℝ)
131 2re 10937 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
132 remulcl 9877 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ) → (2 · (𝑍 / 𝑉)) ∈ ℝ)
133131, 31, 132sylancr 693 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝑍 / 𝑉)) ∈ ℝ)
134130, 133, 20lemul2d 11748 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸))) ≤ (2 · (𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉)))))
135129, 134mpbid 220 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) ≤ (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
13620rpcnd 11706 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 4) ∈ ℂ)
13763rpcnd 11706 . . . . . . . . . . . . . . . . 17 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℂ)
138136, 127, 137adddid 9920 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))))
13915rpcnne0d 11713 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0))
140 rpcnne0 11682 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
14118, 140mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
142 divcan6 10581 . . . . . . . . . . . . . . . . . 18 ((((𝐿 · 𝐸) ∈ ℂ ∧ (𝐿 · 𝐸) ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
143139, 141, 142syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸))) = 1)
144143oveq2d 6543 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (((𝐿 · 𝐸) / 4) · (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
145138, 144eqtrd 2643 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · ((𝑍 / 𝑉) + (4 / (𝐿 · 𝐸)))) = ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1))
146 2cnd 10940 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
147136, 146, 127mulassd 9919 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))))
14815rpcnd 11706 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
149 2rp 11669 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
150 rpcnne0 11682 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
151149, 150mp1i 13 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
152 divdiv1 10585 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 · 𝐸) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
153148, 151, 151, 152syl3anc 1317 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐿 · 𝐸) / 2) / 2) = ((𝐿 · 𝐸) / (2 · 2)))
154 2t2e4 11024 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
155154oveq2i 6538 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 · 𝐸) / (2 · 2)) = ((𝐿 · 𝐸) / 4)
156153, 155syl6req 2660 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 4) = (((𝐿 · 𝐸) / 2) / 2))
157156oveq1d 6542 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((((𝐿 · 𝐸) / 2) / 2) · 2))
158148halfcld 11124 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℂ)
159151simprd 477 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ≠ 0)
160158, 146, 159divcan1d 10651 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐿 · 𝐸) / 2) / 2) · 2) = ((𝐿 · 𝐸) / 2))
161157, 160eqtrd 2643 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐿 · 𝐸) / 4) · 2) = ((𝐿 · 𝐸) / 2))
162161oveq1d 6542 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 4) · 2) · (𝑍 / 𝑉)) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
163147, 162eqtr3d 2645 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 4) · (2 · (𝑍 / 𝑉))) = (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
164135, 145, 1633brtr3d 4608 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) ≤ (((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)))
165 flle 12417 . . . . . . . . . . . . . . 15 ((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16645, 165syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) ≤ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))
16752, 47, 60, 45, 164, 166le2addd 10495 . . . . . . . . . . . . 13 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ≤ ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
16858rpred 11704 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) ∈ ℝ)
16942rprecred 11715 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℝ)
170168, 169readdcld 9925 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) ∈ ℝ)
17115rpred 11704 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
17214rpred 11704 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 ∈ ℝ)
1738rpred 11704 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 ∈ ℝ)
174 eliooord 12060 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
1754, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (0 < 𝐿𝐿 < 1))
176175simprd 477 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐿 < 1)
177173, 114, 14, 176ltmul1dd 11759 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
17814rpcnd 11706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ ℂ)
179178mulid2d 9914 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 · 𝐸) = 𝐸)
180177, 179breqtrd 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 · 𝐸) < 𝐸)
18113simp3d 1067 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
182181simp1d 1065 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐸 ∈ (0(,)1))
183 eliooord 12060 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
184182, 183syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 < 𝐸𝐸 < 1))
185184simprd 477 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐸 < 1)
186171, 172, 114, 180, 185lttrd 10049 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · 𝐸) < 1)
187171, 114, 114, 186ltadd2dd 10047 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) < (1 + 1))
188 df-2 10926 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
189187, 188syl6breqr 4619 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) < 2)
19042rpregt0d 11710 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))))
191131a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
192 2pos 10959 . . . . . . . . . . . . . . . . . . . 20 0 < 2
193192a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
19415rpregt0d 11710 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸)))
195 ltdiv2 10758 . . . . . . . . . . . . . . . . . . 19 ((((1 + (𝐿 · 𝐸)) ∈ ℝ ∧ 0 < (1 + (𝐿 · 𝐸))) ∧ (2 ∈ ℝ ∧ 0 < 2) ∧ ((𝐿 · 𝐸) ∈ ℝ ∧ 0 < (𝐿 · 𝐸))) → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
196190, 191, 193, 194, 195syl121anc 1322 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) < 2 ↔ ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸)))))
197189, 196mpbid 220 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / 2) < ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
19842rpcnd 11706 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 + (𝐿 · 𝐸)) ∈ ℂ)
19942rpcnne0d 11713 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0))
200 divsubdir 10570 . . . . . . . . . . . . . . . . . . 19 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
201198, 49, 199, 200syl3anc 1317 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))))
202 ax-1cn 9850 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
203 pncan2 10139 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ (𝐿 · 𝐸) ∈ ℂ) → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
204202, 148, 203sylancr 693 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) − 1) = (𝐿 · 𝐸))
205204oveq1d 6542 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) − 1) / (1 + (𝐿 · 𝐸))) = ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))))
206 divid 10563 . . . . . . . . . . . . . . . . . . . 20 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
207199, 206syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) = 1)
208207oveq1d 6542 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((1 + (𝐿 · 𝐸)) / (1 + (𝐿 · 𝐸))) − (1 / (1 + (𝐿 · 𝐸)))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
209201, 205, 2083eqtr3d 2651 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 · 𝐸) / (1 + (𝐿 · 𝐸))) = (1 − (1 / (1 + (𝐿 · 𝐸)))))
210197, 209breqtrd 4603 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸)))))
211168, 169, 114ltaddsubd 10476 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1 ↔ ((𝐿 · 𝐸) / 2) < (1 − (1 / (1 + (𝐿 · 𝐸))))))
212210, 211mpbird 245 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) < 1)
213170, 114, 30, 212ltmul1dd 11759 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) < (1 · (𝑍 / 𝑉)))
214 reccl 10541 . . . . . . . . . . . . . . . . 17 (((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0) → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
215199, 214syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / (1 + (𝐿 · 𝐸))) ∈ ℂ)
216158, 215, 127adddird 9921 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
217198, 112mulcomd 9917 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) = (𝑉 · (1 + (𝐿 · 𝐸))))
218217oveq2d 6543 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
21928rpcnd 11706 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
22029rpcnne0d 11713 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0))
221 divdiv1 10585 . . . . . . . . . . . . . . . . . 18 ((𝑍 ∈ ℂ ∧ (𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) ∧ ((1 + (𝐿 · 𝐸)) ∈ ℂ ∧ (1 + (𝐿 · 𝐸)) ≠ 0)) → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
222219, 220, 199, 221syl3anc 1317 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = (𝑍 / (𝑉 · (1 + (𝐿 · 𝐸)))))
22342rpne0d 11709 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 + (𝐿 · 𝐸)) ≠ 0)
224127, 198, 223divrec2d 10654 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 / 𝑉) / (1 + (𝐿 · 𝐸))) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
225218, 222, 2243eqtr2d 2649 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) = ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉)))
226225oveq2d 6543 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + ((1 / (1 + (𝐿 · 𝐸))) · (𝑍 / 𝑉))))
227216, 226eqtr4d 2646 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐿 · 𝐸) / 2) + (1 / (1 + (𝐿 · 𝐸)))) · (𝑍 / 𝑉)) = ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))
228127mulid2d 9914 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝑍 / 𝑉)) = (𝑍 / 𝑉))
229213, 227, 2283brtr3d 4608 . . . . . . . . . . . . 13 (𝜑 → ((((𝐿 · 𝐸) / 2) · (𝑍 / 𝑉)) + (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) < (𝑍 / 𝑉))
23053, 61, 31, 167, 229lelttrd 10046 . . . . . . . . . . . 12 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (𝑍 / 𝑉))
231 fllep1 12419 . . . . . . . . . . . . 13 ((𝑍 / 𝑉) ∈ ℝ → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23231, 231syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑍 / 𝑉) ≤ ((⌊‘(𝑍 / 𝑉)) + 1))
23353, 31, 57, 230, 232ltletrd 10048 . . . . . . . . . . 11 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + 1) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < ((⌊‘(𝑍 / 𝑉)) + 1))
23450, 233eqbrtrd 4599 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1))
23532, 47readdcld 9925 . . . . . . . . . . 11 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) ∈ ℝ)
236235, 55, 114ltadd1d 10469 . . . . . . . . . 10 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) + 1) < ((⌊‘(𝑍 / 𝑉)) + 1)))
237234, 236mpbird 245 . . . . . . . . 9 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)))
23832, 47, 55ltaddsubd 10476 . . . . . . . . 9 (𝜑 → (((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) + (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) < (⌊‘(𝑍 / 𝑉)) ↔ (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))))))
239237, 238mpbid 220 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24031flcld 12416 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℤ)
241 fzval3 12359 . . . . . . . . . . . 12 ((⌊‘(𝑍 / 𝑉)) ∈ ℤ → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
242240, 241syl 17 . . . . . . . . . . 11 (𝜑 → (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
24333, 242syl5eq 2655 . . . . . . . . . 10 (𝜑𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1)))
244243fveq2d 6092 . . . . . . . . 9 (𝜑 → (#‘𝐼) = (#‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))))
245 flword2 12431 . . . . . . . . . . . 12 (((𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ∈ ℝ ∧ (𝑍 / 𝑉) ∈ ℝ ∧ (𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)) ≤ (𝑍 / 𝑉)) → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
24645, 31, 123, 245syl3anc 1317 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
247 eluzp1p1 11545 . . . . . . . . . . 11 ((⌊‘(𝑍 / 𝑉)) ∈ (ℤ‘(⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))) → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
248246, 247syl 17 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
249 hashfzo 13028 . . . . . . . . . 10 (((⌊‘(𝑍 / 𝑉)) + 1) ∈ (ℤ‘((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) → (#‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
250248, 249syl 17 . . . . . . . . 9 (𝜑 → (#‘(((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)..^((⌊‘(𝑍 / 𝑉)) + 1))) = (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)))
25155recnd 9924 . . . . . . . . . 10 (𝜑 → (⌊‘(𝑍 / 𝑉)) ∈ ℂ)
252251, 48, 49pnpcan2d 10281 . . . . . . . . 9 (𝜑 → (((⌊‘(𝑍 / 𝑉)) + 1) − ((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
253244, 250, 2523eqtrd 2647 . . . . . . . 8 (𝜑 → (#‘𝐼) = ((⌊‘(𝑍 / 𝑉)) − (⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉)))))
254239, 253breqtrrd 4605 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) < (#‘𝐼))
25532, 38, 254ltled 10036 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (#‘𝐼))
25621, 38, 30lemuldivd 11753 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 4) · (𝑍 / 𝑉)) ≤ (#‘𝐼) ↔ ((𝐿 · 𝐸) / 4) ≤ ((#‘𝐼) / (𝑍 / 𝑉))))
257255, 256mpbid 220 . . . . 5 (𝜑 → ((𝐿 · 𝐸) / 4) ≤ ((#‘𝐼) / (𝑍 / 𝑉)))
25829rpred 11704 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ ℝ)
25969, 76, 66, 95, 101ltletrd 10048 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 + (𝐿 · 𝐸)) · 𝑉) < (√‘𝑍))
260258, 69, 66, 120, 259lttrd 10049 . . . . . . . . . . . . . . 15 (𝜑𝑉 < (√‘𝑍))
261258, 66, 260ltled 10036 . . . . . . . . . . . . . 14 (𝜑𝑉 ≤ (√‘𝑍))
26229rprege0d 11711 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ ℝ ∧ 0 ≤ 𝑉))
26365rprege0d 11711 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
264 le2sq 12755 . . . . . . . . . . . . . . 15 (((𝑉 ∈ ℝ ∧ 0 ≤ 𝑉) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
265262, 263, 264syl2anc 690 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ≤ (√‘𝑍) ↔ (𝑉↑2) ≤ ((√‘𝑍)↑2)))
266261, 265mpbid 220 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ≤ ((√‘𝑍)↑2))
267 resqrtth 13790 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
268105, 267syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
269266, 268breqtrd 4603 . . . . . . . . . . . 12 (𝜑 → (𝑉↑2) ≤ 𝑍)
270 2z 11242 . . . . . . . . . . . . . . 15 2 ∈ ℤ
271 rpexpcl 12696 . . . . . . . . . . . . . . 15 ((𝑉 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑉↑2) ∈ ℝ+)
27229, 270, 271sylancl 692 . . . . . . . . . . . . . 14 (𝜑 → (𝑉↑2) ∈ ℝ+)
273272rpred 11704 . . . . . . . . . . . . 13 (𝜑 → (𝑉↑2) ∈ ℝ)
274273, 109, 28lemul2d 11748 . . . . . . . . . . . 12 (𝜑 → ((𝑉↑2) ≤ 𝑍 ↔ (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍)))
275269, 274mpbid 220 . . . . . . . . . . 11 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍 · 𝑍))
276219sqvald 12822 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) = (𝑍 · 𝑍))
277275, 276breqtrrd 4605 . . . . . . . . . 10 (𝜑 → (𝑍 · (𝑉↑2)) ≤ (𝑍↑2))
278109resqcld 12852 . . . . . . . . . . 11 (𝜑 → (𝑍↑2) ∈ ℝ)
279109, 278, 272lemuldivd 11753 . . . . . . . . . 10 (𝜑 → ((𝑍 · (𝑉↑2)) ≤ (𝑍↑2) ↔ 𝑍 ≤ ((𝑍↑2) / (𝑉↑2))))
280277, 279mpbid 220 . . . . . . . . 9 (𝜑𝑍 ≤ ((𝑍↑2) / (𝑉↑2)))
28129rpne0d 11709 . . . . . . . . . 10 (𝜑𝑉 ≠ 0)
282219, 112, 281sqdivd 12838 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) = ((𝑍↑2) / (𝑉↑2)))
283280, 282breqtrrd 4605 . . . . . . . 8 (𝜑𝑍 ≤ ((𝑍 / 𝑉)↑2))
284 rpexpcl 12696 . . . . . . . . . 10 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28530, 270, 284sylancl 692 . . . . . . . . 9 (𝜑 → ((𝑍 / 𝑉)↑2) ∈ ℝ+)
28628, 285logled 24094 . . . . . . . 8 (𝜑 → (𝑍 ≤ ((𝑍 / 𝑉)↑2) ↔ (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2))))
287283, 286mpbid 220 . . . . . . 7 (𝜑 → (log‘𝑍) ≤ (log‘((𝑍 / 𝑉)↑2)))
288 relogexp 24063 . . . . . . . 8 (((𝑍 / 𝑉) ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
28930, 270, 288sylancl 692 . . . . . . 7 (𝜑 → (log‘((𝑍 / 𝑉)↑2)) = (2 · (log‘(𝑍 / 𝑉))))
290287, 289breqtrd 4603 . . . . . 6 (𝜑 → (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉))))
29128relogcld 24090 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
29230relogcld 24090 . . . . . . 7 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℝ)
293 ledivmul 10748 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
294291, 292, 191, 193, 293syl112anc 1321 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)) ↔ (log‘𝑍) ≤ (2 · (log‘(𝑍 / 𝑉)))))
295290, 294mpbird 245 . . . . 5 (𝜑 → ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉)))
29620rprege0d 11711 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)))
29738, 30rerpdivcld 11735 . . . . . 6 (𝜑 → ((#‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ)
29827simp2d 1066 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
299298simp1d 1065 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
300109, 299rplogcld 24096 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
301300rphalfcld 11716 . . . . . . 7 (𝜑 → ((log‘𝑍) / 2) ∈ ℝ+)
302301rprege0d 11711 . . . . . 6 (𝜑 → (((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)))
303 lemul12a 10730 . . . . . 6 ((((((𝐿 · 𝐸) / 4) ∈ ℝ ∧ 0 ≤ ((𝐿 · 𝐸) / 4)) ∧ ((#‘𝐼) / (𝑍 / 𝑉)) ∈ ℝ) ∧ ((((log‘𝑍) / 2) ∈ ℝ ∧ 0 ≤ ((log‘𝑍) / 2)) ∧ (log‘(𝑍 / 𝑉)) ∈ ℝ)) → ((((𝐿 · 𝐸) / 4) ≤ ((#‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
304296, 297, 302, 292, 303syl22anc 1318 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 4) ≤ ((#‘𝐼) / (𝑍 / 𝑉)) ∧ ((log‘𝑍) / 2) ≤ (log‘(𝑍 / 𝑉))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉)))))
305257, 295, 304mp2and 710 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) ≤ (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
306300rpcnd 11706 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
307 8nn 11038 . . . . . . . 8 8 ∈ ℕ
308 nnrp 11674 . . . . . . . 8 (8 ∈ ℕ → 8 ∈ ℝ+)
309307, 308ax-mp 5 . . . . . . 7 8 ∈ ℝ+
310 rpcnne0 11682 . . . . . . 7 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
311309, 310mp1i 13 . . . . . 6 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
312 div23 10553 . . . . . 6 (((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0)) → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
313148, 306, 311, 312syl3anc 1317 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 8) · (log‘𝑍)))
314 divmuldiv 10574 . . . . . . 7 ((((𝐿 · 𝐸) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ) ∧ ((4 ∈ ℂ ∧ 4 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
315148, 306, 141, 151, 314syl22anc 1318 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)))
316 4t2e8 11028 . . . . . . 7 (4 · 2) = 8
317316oveq2i 6538 . . . . . 6 (((𝐿 · 𝐸) · (log‘𝑍)) / (4 · 2)) = (((𝐿 · 𝐸) · (log‘𝑍)) / 8)
318315, 317syl6req 2660 . . . . 5 (𝜑 → (((𝐿 · 𝐸) · (log‘𝑍)) / 8) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
319313, 318eqtr3d 2645 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) = (((𝐿 · 𝐸) / 4) · ((log‘𝑍) / 2)))
32038recnd 9924 . . . . 5 (𝜑 → (#‘𝐼) ∈ ℂ)
321292recnd 9924 . . . . 5 (𝜑 → (log‘(𝑍 / 𝑉)) ∈ ℂ)
32230rpcnne0d 11713 . . . . 5 (𝜑 → ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0))
323 divass 10552 . . . . . 6 (((#‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((#‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
324 div23 10553 . . . . . 6 (((#‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → (((#‘𝐼) · (log‘(𝑍 / 𝑉))) / (𝑍 / 𝑉)) = (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
325323, 324eqtr3d 2645 . . . . 5 (((#‘𝐼) ∈ ℂ ∧ (log‘(𝑍 / 𝑉)) ∈ ℂ ∧ ((𝑍 / 𝑉) ∈ ℂ ∧ (𝑍 / 𝑉) ≠ 0)) → ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
326320, 321, 322, 325syl3anc 1317 . . . 4 (𝜑 → ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) = (((#‘𝐼) / (𝑍 / 𝑉)) · (log‘(𝑍 / 𝑉))))
327305, 319, 3263brtr4d 4609 . . 3 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))
328 rpdivcl 11688 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
32915, 309, 328sylancl 692 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
330329, 300rpmulcld 11720 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
331330rpred 11704 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
332292, 30rerpdivcld 11735 . . . . 5 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℝ)
33338, 332remulcld 9926 . . . 4 (𝜑 → ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ∈ ℝ)
334181simp3d 1067 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
335331, 333, 334lemul2d 11748 . . 3 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) ≤ ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))) ↔ ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))))
336327, 335mpbid 220 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((𝑈𝐸) · ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
337334rpcnd 11706 . . 3 (𝜑 → (𝑈𝐸) ∈ ℂ)
338332recnd 9924 . . 3 (𝜑 → ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)) ∈ ℂ)
339337, 320, 338mul12d 10096 . 2 (𝜑 → ((𝑈𝐸) · ((#‘𝐼) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))) = ((#‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
340336, 339breqtrd 4603 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((#‘𝐼) · ((𝑈𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  Fincfn 7818  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  +∞cpnf 9927   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  3c3 10918  4c4 10919  8c8 10923  0cn0 11139  cz 11210  cdc 11325  cuz 11519  +crp 11664  (,)cioo 12002  [,)cico 12004  [,]cicc 12005  ...cfz 12152  ..^cfzo 12289  cfl 12408  cexp 12677  #chash 12934  csqrt 13767  abscabs 13768  expce 14577  eceu 14578  logclog 24022  ψcchp 24536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-e 14584  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024
This theorem is referenced by:  pntlemj  25009
  Copyright terms: Public domain W3C validator