MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd1 Structured version   Visualization version   GIF version

Theorem pntpbnd1 26156
Description: Lemma for pntpbnd 26158. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd1 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
Distinct variable groups:   𝑖,𝑗,𝑛,𝑦,𝐾   𝜑,𝑛   𝑅,𝑖,𝑗,𝑛,𝑦   𝑖,𝑎,𝑗,𝑛,𝑦,𝐴   𝑛,𝐸,𝑦   𝑖,𝑌,𝑗,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑛,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑛,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd1
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13335 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
2 ioossre 12792 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℝ
3 pntpbnd1.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (𝑋(,)+∞))
42, 3sseldi 3965 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
5 0red 10638 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
6 pntpbnd1.x . . . . . . . . . . . . . . . 16 𝑋 = (exp‘(2 / 𝐸))
7 2re 11705 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
8 ioossre 12792 . . . . . . . . . . . . . . . . . . . 20 (0(,)1) ⊆ ℝ
9 pntpbnd1.e . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (0(,)1))
108, 9sseldi 3965 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸 ∈ ℝ)
11 eliooord 12790 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 < 𝐸𝐸 < 1))
1312simpld 497 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐸)
1410, 13elrpd 12422 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
15 rerpdivcl 12413 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
167, 14, 15sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 / 𝐸) ∈ ℝ)
1716reefcld 15435 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
186, 17eqeltrid 2917 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
19 efgt0 15450 . . . . . . . . . . . . . . . . 17 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
2016, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (exp‘(2 / 𝐸)))
2120, 6breqtrrdi 5101 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑋)
22 eliooord 12790 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (𝑋(,)+∞) → (𝑋 < 𝑌𝑌 < +∞))
233, 22syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 < 𝑌𝑌 < +∞))
2423simpld 497 . . . . . . . . . . . . . . 15 (𝜑𝑋 < 𝑌)
255, 18, 4, 21, 24lttrd 10795 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑌)
265, 4, 25ltled 10782 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑌)
27 flge0nn0 13184 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
284, 26, 27syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
29 nn0p1nn 11930 . . . . . . . . . . . 12 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
31 elfzuz 12898 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
32 eluznn 12312 . . . . . . . . . . 11 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
3330, 31, 32syl2an 597 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
3433nnrpd 12423 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
35 pntpbnd.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
3635pntrf 26133 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
3736ffvelrni 6845 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3834, 37syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
3933peano2nnd 11649 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
4033, 39nnmulcld 11684 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
4138, 40nndivred 11685 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4241adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
431, 42fsumrecl 15085 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4438adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
45 fveq2 6665 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
4645breq2d 5071 . . . . . . . . 9 (𝑖 = 𝑛 → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅𝑛)))
4746rspccva 3622 . . . . . . . 8 ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (𝑅𝑛))
4847adantll 712 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (𝑅𝑛))
4940adantlr 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
5049nnred 11647 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℝ)
5149nngt0d 11680 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 < (𝑛 · (𝑛 + 1)))
52 divge0 11503 . . . . . . 7 ((((𝑅𝑛) ∈ ℝ ∧ 0 ≤ (𝑅𝑛)) ∧ ((𝑛 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 + 1)))) → 0 ≤ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5344, 48, 50, 51, 52syl22anc 836 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
541, 42, 53fsumge0 15144 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → 0 ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5543, 54absidd 14776 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5642, 53absidd 14776 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5756sumeq2dv 15054 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5855, 57eqtr4d 2859 . . 3 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
59 fzfid 13335 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
6041adantlr 713 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6160recnd 10663 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
6259, 61fsumneg 15136 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
6338adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
6463renegcld 11061 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -(𝑅𝑛) ∈ ℝ)
6545breq1d 5069 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑅𝑖) ≤ 0 ↔ (𝑅𝑛) ≤ 0))
6665rspccva 3622 . . . . . . . . . . 11 ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0 ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ≤ 0)
6766adantll 712 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ≤ 0)
6863le0neg1d 11205 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) ≤ 0 ↔ 0 ≤ -(𝑅𝑛)))
6967, 68mpbid 234 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ -(𝑅𝑛))
7040adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
7170nnred 11647 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℝ)
7270nngt0d 11680 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 < (𝑛 · (𝑛 + 1)))
73 divge0 11503 . . . . . . . . 9 (((-(𝑅𝑛) ∈ ℝ ∧ 0 ≤ -(𝑅𝑛)) ∧ ((𝑛 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 + 1)))) → 0 ≤ (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7464, 69, 71, 72, 73syl22anc 836 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7538recnd 10663 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
7640nncnd 11648 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℂ)
7740nnne0d 11681 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ≠ 0)
7875, 76, 77divnegd 11423 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7978adantlr 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8074, 79breqtrrd 5087 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ -((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8160le0neg1d 11205 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0 ↔ 0 ≤ -((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
8280, 81mpbird 259 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0)
8360, 82absnidd 14767 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = -((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8483sumeq2dv 15054 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8559, 60fsumrecl 15085 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
8660renegcld 11061 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
8759, 86, 80fsumge0 15144 . . . . . . 7 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → 0 ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8887, 62breqtrd 5085 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → 0 ≤ -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8985le0neg1d 11205 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0 ↔ 0 ≤ -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9088, 89mpbird 259 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0)
9185, 90absnidd 14767 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9262, 84, 913eqtr4rd 2867 . . 3 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
93 pntpbnd1.c . . . . . . . . . . . . 13 𝐶 = (𝐴 + 2)
94 pntpbnd1.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ+)
95 2rp 12388 . . . . . . . . . . . . . 14 2 ∈ ℝ+
96 rpaddcl 12405 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
9794, 95, 96sylancl 588 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 2) ∈ ℝ+)
9893, 97eqeltrid 2917 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
9998, 14rpdivcld 12442 . . . . . . . . . . 11 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
10099rpred 12425 . . . . . . . . . 10 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
101100reefcld 15435 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
102 pnfxr 10689 . . . . . . . . 9 +∞ ∈ ℝ*
103 icossre 12811 . . . . . . . . 9 (((exp‘(𝐶 / 𝐸)) ∈ ℝ ∧ +∞ ∈ ℝ*) → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
104101, 102, 103sylancl 588 . . . . . . . 8 (𝜑 → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
105 pntpbnd1.k . . . . . . . 8 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
106104, 105sseldd 3968 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
107106, 4remulcld 10665 . . . . . 6 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
1084recnd 10663 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
109108mulid2d 10653 . . . . . . . 8 (𝜑 → (1 · 𝑌) = 𝑌)
110 1red 10636 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
111 efgt1 15463 . . . . . . . . . . 11 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
11299, 111syl 17 . . . . . . . . . 10 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
113 elicopnf 12827 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
114101, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
115114simplbda 502 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
116105, 115mpdan 685 . . . . . . . . . 10 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
117110, 101, 106, 112, 116ltletrd 10794 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
118 ltmul1 11484 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 < 𝐾 ↔ (1 · 𝑌) < (𝐾 · 𝑌)))
119110, 106, 4, 25, 118syl112anc 1370 . . . . . . . . 9 (𝜑 → (1 < 𝐾 ↔ (1 · 𝑌) < (𝐾 · 𝑌)))
120117, 119mpbid 234 . . . . . . . 8 (𝜑 → (1 · 𝑌) < (𝐾 · 𝑌))
121109, 120eqbrtrrd 5083 . . . . . . 7 (𝜑𝑌 < (𝐾 · 𝑌))
1224, 107, 121ltled 10782 . . . . . 6 (𝜑𝑌 ≤ (𝐾 · 𝑌))
123 flword2 13177 . . . . . 6 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)))
1244, 107, 122, 123syl3anc 1367 . . . . 5 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)))
125107flcld 13162 . . . . . 6 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
126 uzid 12252 . . . . . 6 ((⌊‘(𝐾 · 𝑌)) ∈ ℤ → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌))))
127125, 126syl 17 . . . . 5 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌))))
128 elfzuzb 12896 . . . . 5 ((⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) ∧ (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌)))))
129124, 127, 128sylanbrc 585 . . . 4 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))))
130 oveq2 7158 . . . . . . . 8 (𝑥 = (⌊‘𝑌) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(⌊‘𝑌)))
131130raleqdv 3416 . . . . . . 7 (𝑥 = (⌊‘𝑌) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖)))
132130raleqdv 3416 . . . . . . 7 (𝑥 = (⌊‘𝑌) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0))
133131, 132orbi12d 915 . . . . . 6 (𝑥 = (⌊‘𝑌) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)))
134133imbi2d 343 . . . . 5 (𝑥 = (⌊‘𝑌) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0))))
135 oveq2 7158 . . . . . . . 8 (𝑥 = 𝑚 → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...𝑚))
136135raleqdv 3416 . . . . . . 7 (𝑥 = 𝑚 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖)))
137135raleqdv 3416 . . . . . . 7 (𝑥 = 𝑚 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0))
138136, 137orbi12d 915 . . . . . 6 (𝑥 = 𝑚 → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0)))
139138imbi2d 343 . . . . 5 (𝑥 = 𝑚 → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0))))
140 oveq2 7158 . . . . . . . 8 (𝑥 = (𝑚 + 1) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(𝑚 + 1)))
141140raleqdv 3416 . . . . . . 7 (𝑥 = (𝑚 + 1) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖)))
142140raleqdv 3416 . . . . . . 7 (𝑥 = (𝑚 + 1) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
143141, 142orbi12d 915 . . . . . 6 (𝑥 = (𝑚 + 1) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
144143imbi2d 343 . . . . 5 (𝑥 = (𝑚 + 1) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
145 oveq2 7158 . . . . . . . 8 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))
146145raleqdv 3416 . . . . . . 7 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)))
147145raleqdv 3416 . . . . . . 7 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))
148146, 147orbi12d 915 . . . . . 6 (𝑥 = (⌊‘(𝐾 · 𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0)))
149148imbi2d 343 . . . . 5 (𝑥 = (⌊‘(𝐾 · 𝑌)) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))))
150 elfzle3 12907 . . . . . . . . 9 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌))
151 elfzel2 12900 . . . . . . . . . . . 12 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) ∈ ℤ)
152151zred 12081 . . . . . . . . . . 11 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) ∈ ℝ)
153152ltp1d 11564 . . . . . . . . . 10 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
154 peano2re 10807 . . . . . . . . . . . 12 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
155152, 154syl 17 . . . . . . . . . . 11 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) + 1) ∈ ℝ)
156152, 155ltnled 10781 . . . . . . . . . 10 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) < ((⌊‘𝑌) + 1) ↔ ¬ ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌)))
157153, 156mpbid 234 . . . . . . . . 9 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ¬ ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌))
158150, 157pm2.21dd 197 . . . . . . . 8 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (𝑅𝑖) ≤ 0)
159158rgen 3148 . . . . . . 7 𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0
160159olci 862 . . . . . 6 (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)
1611602a1i 12 . . . . 5 ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)))
162 elfzofz 13047 . . . . . . . . . 10 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))))
163 elfzp12 12980 . . . . . . . . . . 11 ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) → (𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
164124, 163syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
165162, 164syl5ib 246 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
166165imp 409 . . . . . . . 8 ((𝜑𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌)))) → (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
16730nnrpd 12423 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
16836ffvelrni 6845 . . . . . . . . . . . . . 14 (((⌊‘𝑌) + 1) ∈ ℝ+ → (𝑅‘((⌊‘𝑌) + 1)) ∈ ℝ)
169167, 168syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑅‘((⌊‘𝑌) + 1)) ∈ ℝ)
1705, 169letrid 10786 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
171170adantr 483 . . . . . . . . . . 11 ((𝜑𝑚 = (⌊‘𝑌)) → (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
172 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑚 = (⌊‘𝑌) → (𝑚 + 1) = ((⌊‘𝑌) + 1))
173172oveq2d 7166 . . . . . . . . . . . . . . 15 (𝑚 = (⌊‘𝑌) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)))
1744flcld 13162 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
175174peano2zd 12084 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
176 fzsn 12943 . . . . . . . . . . . . . . . 16 (((⌊‘𝑌) + 1) ∈ ℤ → (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)) = {((⌊‘𝑌) + 1)})
177175, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)) = {((⌊‘𝑌) + 1)})
178173, 177sylan9eqr 2878 . . . . . . . . . . . . . 14 ((𝜑𝑚 = (⌊‘𝑌)) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = {((⌊‘𝑌) + 1)})
179178raleqdv 3416 . . . . . . . . . . . . 13 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ {((⌊‘𝑌) + 1)}0 ≤ (𝑅𝑖)))
180 ovex 7183 . . . . . . . . . . . . . 14 ((⌊‘𝑌) + 1) ∈ V
181 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑖 = ((⌊‘𝑌) + 1) → (𝑅𝑖) = (𝑅‘((⌊‘𝑌) + 1)))
182181breq2d 5071 . . . . . . . . . . . . . 14 (𝑖 = ((⌊‘𝑌) + 1) → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1))))
183180, 182ralsn 4613 . . . . . . . . . . . . 13 (∀𝑖 ∈ {((⌊‘𝑌) + 1)}0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1)))
184179, 183syl6bb 289 . . . . . . . . . . . 12 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1))))
185178raleqdv 3416 . . . . . . . . . . . . 13 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ {((⌊‘𝑌) + 1)} (𝑅𝑖) ≤ 0))
186181breq1d 5069 . . . . . . . . . . . . . 14 (𝑖 = ((⌊‘𝑌) + 1) → ((𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
187180, 186ralsn 4613 . . . . . . . . . . . . 13 (∀𝑖 ∈ {((⌊‘𝑌) + 1)} (𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0)
188185, 187syl6bb 289 . . . . . . . . . . . 12 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
189184, 188orbi12d 915 . . . . . . . . . . 11 ((𝜑𝑚 = (⌊‘𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0) ↔ (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0)))
190171, 189mpbird 259 . . . . . . . . . 10 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
191190a1d 25 . . . . . . . . 9 ((𝜑𝑚 = (⌊‘𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
192 elfzuz 12898 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)))
193192adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)))
194 eluzfz2 12909 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)) → 𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚))
195193, 194syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚))
196 fveq2 6665 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑚 → (𝑅𝑖) = (𝑅𝑚))
197196breq2d 5071 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅𝑚)))
198197rspcv 3618 . . . . . . . . . . . . . . 15 (𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅𝑚)))
199195, 198syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅𝑚)))
200 pntpbnd1.3 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
201200adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
202 eluznn 12312 . . . . . . . . . . . . . . . . . . . . 21 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑚 ∈ ℕ)
20330, 192, 202syl2an 597 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ ℕ)
204203adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝑚 ∈ ℕ)
205 elfzle1 12904 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑚)
206205adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑚)
207 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ ℤ)
208 zltp1le 12026 . . . . . . . . . . . . . . . . . . . . . . . 24 (((⌊‘𝑌) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((⌊‘𝑌) < 𝑚 ↔ ((⌊‘𝑌) + 1) ≤ 𝑚))
209174, 207, 208syl2an 597 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑚 ↔ ((⌊‘𝑌) + 1) ≤ 𝑚))
210206, 209mpbird 259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑚)
211 fllt 13170 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑌 < 𝑚 ↔ (⌊‘𝑌) < 𝑚))
2124, 207, 211syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑚 ↔ (⌊‘𝑌) < 𝑚))
213210, 212mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑚)
214 elfzle2 12905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ≤ (⌊‘(𝐾 · 𝑌)))
215214adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ≤ (⌊‘(𝐾 · 𝑌)))
216 flge 13169 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (⌊‘(𝐾 · 𝑌))))
217107, 207, 216syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (⌊‘(𝐾 · 𝑌))))
218215, 217mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ≤ (𝐾 · 𝑌))
219213, 218jca 514 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)))
220219adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)))
2219ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝐸 ∈ (0(,)1))
2223ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝑌 ∈ (𝑋(,)+∞))
223 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
22435, 221, 6, 222, 204, 220, 223pntpbnd1a 26155 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)
225 breq2 5063 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (𝑌 < 𝑦𝑌 < 𝑚))
226 breq1 5062 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (𝐾 · 𝑌)))
227225, 226anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑚 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌))))
228 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑚 → (𝑅𝑦) = (𝑅𝑚))
229 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑚𝑦 = 𝑚)
230228, 229oveq12d 7168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑚 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑚) / 𝑚))
231230fveq2d 6669 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑚) / 𝑚)))
232231breq1d 5069 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑚 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸))
233227, 232anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑚 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)))
234233rspcev 3623 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ ((𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
235204, 220, 224, 234syl12anc 834 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
236201, 235mtand 814 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
237236adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
238203nnrpd 12423 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ ℝ+)
23936ffvelrni 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℝ+ → (𝑅𝑚) ∈ ℝ)
240238, 239syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑚) ∈ ℝ)
241240adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ∈ ℝ)
242241recnd 10663 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ∈ ℂ)
243242subid1d 10980 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → ((𝑅𝑚) − 0) = (𝑅𝑚))
244203peano2nnd 11649 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 + 1) ∈ ℕ)
245244nnrpd 12423 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 + 1) ∈ ℝ+)
24636ffvelrni 6845 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 + 1) ∈ ℝ+ → (𝑅‘(𝑚 + 1)) ∈ ℝ)
247245, 246syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
248247adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
249 0red 10638 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → 0 ∈ ℝ)
250 0re 10637 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
251 letric 10734 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ (𝑅‘(𝑚 + 1)) ∈ ℝ) → (0 ≤ (𝑅‘(𝑚 + 1)) ∨ (𝑅‘(𝑚 + 1)) ≤ 0))
252250, 247, 251sylancr 589 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (0 ≤ (𝑅‘(𝑚 + 1)) ∨ (𝑅‘(𝑚 + 1)) ≤ 0))
253252ord 860 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ 0 ≤ (𝑅‘(𝑚 + 1)) → (𝑅‘(𝑚 + 1)) ≤ 0))
254253imp 409 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1))) → (𝑅‘(𝑚 + 1)) ≤ 0)
255254adantrl 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ≤ 0)
256248, 249, 241, 255lesub2dd 11251 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → ((𝑅𝑚) − 0) ≤ ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
257243, 256eqbrtrrd 5083 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ≤ ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
258 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → 0 ≤ (𝑅𝑚))
259241, 258absidd 14776 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘(𝑅𝑚)) = (𝑅𝑚))
260248, 249, 241, 255, 258letrd 10791 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ≤ (𝑅𝑚))
261248, 241, 260abssuble0d 14786 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))) = ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
262257, 259, 2613brtr4d 5091 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
263262expr 459 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → (¬ 0 ≤ (𝑅‘(𝑚 + 1)) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))))
264237, 263mt3d 150 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → 0 ≤ (𝑅‘(𝑚 + 1)))
265264ex 415 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (0 ≤ (𝑅𝑚) → 0 ≤ (𝑅‘(𝑚 + 1))))
266199, 265syld 47 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅‘(𝑚 + 1))))
267 ovex 7183 . . . . . . . . . . . . . 14 (𝑚 + 1) ∈ V
268 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚 + 1) → (𝑅𝑖) = (𝑅‘(𝑚 + 1)))
269268breq2d 5071 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘(𝑚 + 1))))
270267, 269ralsn 4613 . . . . . . . . . . . . 13 (∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘(𝑚 + 1)))
271266, 270syl6ibr 254 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖)))
272271ancld 553 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖))))
273 fzsuc 12948 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)}))
274193, 273syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)}))
275274raleqdv 3416 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})0 ≤ (𝑅𝑖)))
276 ralunb 4167 . . . . . . . . . . . 12 (∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})0 ≤ (𝑅𝑖) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖)))
277275, 276syl6bb 289 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖))))
278272, 277sylibrd 261 . . . . . . . . . 10 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖)))
279196breq1d 5069 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → ((𝑅𝑖) ≤ 0 ↔ (𝑅𝑚) ≤ 0))
280279rspcv 3618 . . . . . . . . . . . . . . 15 (𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅𝑚) ≤ 0))
281195, 280syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅𝑚) ≤ 0))
282236adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
283253con1d 147 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (𝑅‘(𝑚 + 1)) ≤ 0 → 0 ≤ (𝑅‘(𝑚 + 1))))
284283imp 409 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0) → 0 ≤ (𝑅‘(𝑚 + 1)))
285284adantrl 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → 0 ≤ (𝑅‘(𝑚 + 1)))
286240adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ∈ ℝ)
287286renegcld 11061 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ∈ ℝ)
288247adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
289287, 288addge02d 11223 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (0 ≤ (𝑅‘(𝑚 + 1)) ↔ -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚))))
290285, 289mpbid 234 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚)))
291288recnd 10663 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅‘(𝑚 + 1)) ∈ ℂ)
292286recnd 10663 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ∈ ℂ)
293291, 292negsubd 10997 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚)) = ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
294290, 293breqtrd 5085 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
295 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ≤ 0)
296286, 295absnidd 14767 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘(𝑅𝑚)) = -(𝑅𝑚))
297 0red 10638 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → 0 ∈ ℝ)
298286, 297, 288, 295, 285letrd 10791 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ≤ (𝑅‘(𝑚 + 1)))
299286, 288, 298abssubge0d 14785 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))) = ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
300294, 296, 2993brtr4d 5091 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
301300expr 459 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → (¬ (𝑅‘(𝑚 + 1)) ≤ 0 → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))))
302282, 301mt3d 150 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → (𝑅‘(𝑚 + 1)) ≤ 0)
303302ex 415 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑚) ≤ 0 → (𝑅‘(𝑚 + 1)) ≤ 0))
304281, 303syld 47 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅‘(𝑚 + 1)) ≤ 0))
305268breq1d 5069 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → ((𝑅𝑖) ≤ 0 ↔ (𝑅‘(𝑚 + 1)) ≤ 0))
306267, 305ralsn 4613 . . . . . . . . . . . . 13 (∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0 ↔ (𝑅‘(𝑚 + 1)) ≤ 0)
307304, 306syl6ibr 254 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0))
308307ancld 553 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0)))
309274raleqdv 3416 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})(𝑅𝑖) ≤ 0))
310 ralunb 4167 . . . . . . . . . . . 12 (∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})(𝑅𝑖) ≤ 0 ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0))
311309, 310syl6bb 289 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0)))
312308, 311sylibrd 261 . . . . . . . . . 10 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
313278, 312orim12d 961 . . . . . . . . 9 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
314191, 313jaodan 954 . . . . . . . 8 ((𝜑 ∧ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
315166, 314syldan 593 . . . . . . 7 ((𝜑𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌)))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
316315expcom 416 . . . . . 6 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → (𝜑 → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
317316a2d 29 . . . . 5 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0)) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
318134, 139, 144, 149, 161, 317fzind2 13149 . . . 4 ((⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0)))
319129, 318mpcom 38 . . 3 (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))
32058, 92, 319mpjaodan 955 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
321 pntpbnd1.2 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
322 fveq2 6665 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
323 id 22 . . . . . . . . . 10 (𝑦 = 𝑛𝑦 = 𝑛)
324 oveq1 7157 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
325323, 324oveq12d 7168 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 · (𝑦 + 1)) = (𝑛 · (𝑛 + 1)))
326322, 325oveq12d 7168 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
327326cbvsumv 15047 . . . . . . 7 Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))
328 oveq1 7157 . . . . . . . 8 (𝑖 = ((⌊‘𝑌) + 1) → (𝑖...𝑗) = (((⌊‘𝑌) + 1)...𝑗))
329328sumeq1d 15052 . . . . . . 7 (𝑖 = ((⌊‘𝑌) + 1) → Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
330327, 329syl5eq 2868 . . . . . 6 (𝑖 = ((⌊‘𝑌) + 1) → Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
331330fveq2d 6669 . . . . 5 (𝑖 = ((⌊‘𝑌) + 1) → (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) = (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
332331breq1d 5069 . . . 4 (𝑖 = ((⌊‘𝑌) + 1) → ((abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴 ↔ (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴))
333 oveq2 7158 . . . . . . 7 (𝑗 = (⌊‘(𝐾 · 𝑌)) → (((⌊‘𝑌) + 1)...𝑗) = (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))
334333sumeq1d 15052 . . . . . 6 (𝑗 = (⌊‘(𝐾 · 𝑌)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
335334fveq2d 6669 . . . . 5 (𝑗 = (⌊‘(𝐾 · 𝑌)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336335breq1d 5069 . . . 4 (𝑗 = (⌊‘(𝐾 · 𝑌)) → ((abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴 ↔ (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴))
337332, 336rspc2va 3634 . . 3 (((((⌊‘𝑌) + 1) ∈ ℕ ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℤ) ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
33830, 125, 321, 337syl21anc 835 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
339320, 338eqbrtrrd 5083 1 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cun 3934  wss 3936  {csn 4561   class class class wbr 5059  cmpt 5139  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  +crp 12383  (,)cioo 12732  [,)cico 12734  ...cfz 12886  ..^cfzo 13027  cfl 13154  abscabs 14587  Σcsu 15036  expce 15409  ψcchp 25664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-e 15416  df-sin 15417  df-cos 15418  df-pi 15420  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-vma 25669  df-chp 25670
This theorem is referenced by:  pntpbnd2  26157
  Copyright terms: Public domain W3C validator