MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd1 Structured version   Visualization version   GIF version

Theorem pntpbnd1 25474
Description: Lemma for pntpbnd 25476. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd1 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
Distinct variable groups:   𝑖,𝑗,𝑛,𝑦,𝐾   𝜑,𝑛   𝑅,𝑖,𝑗,𝑛,𝑦   𝑖,𝑎,𝑗,𝑛,𝑦,𝐴   𝑛,𝐸,𝑦   𝑖,𝑌,𝑗,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑛,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑛,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd1
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12966 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
2 ioossre 12428 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℝ
3 pntpbnd1.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ (𝑋(,)+∞))
42, 3sseldi 3742 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℝ)
5 0red 10233 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
6 pntpbnd1.x . . . . . . . . . . . . . . . 16 𝑋 = (exp‘(2 / 𝐸))
7 2re 11282 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
8 ioossre 12428 . . . . . . . . . . . . . . . . . . . 20 (0(,)1) ⊆ ℝ
9 pntpbnd1.e . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐸 ∈ (0(,)1))
108, 9sseldi 3742 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸 ∈ ℝ)
11 eliooord 12426 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
129, 11syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0 < 𝐸𝐸 < 1))
1312simpld 477 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐸)
1410, 13elrpd 12062 . . . . . . . . . . . . . . . . . 18 (𝜑𝐸 ∈ ℝ+)
15 rerpdivcl 12054 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
167, 14, 15sylancr 698 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 / 𝐸) ∈ ℝ)
1716reefcld 15017 . . . . . . . . . . . . . . . 16 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
186, 17syl5eqel 2843 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
19 efgt0 15032 . . . . . . . . . . . . . . . . 17 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
2016, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (exp‘(2 / 𝐸)))
2120, 6syl6breqr 4846 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑋)
22 eliooord 12426 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (𝑋(,)+∞) → (𝑋 < 𝑌𝑌 < +∞))
233, 22syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 < 𝑌𝑌 < +∞))
2423simpld 477 . . . . . . . . . . . . . . 15 (𝜑𝑋 < 𝑌)
255, 18, 4, 21, 24lttrd 10390 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑌)
265, 4, 25ltled 10377 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑌)
27 flge0nn0 12815 . . . . . . . . . . . . 13 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
284, 26, 27syl2anc 696 . . . . . . . . . . . 12 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
29 nn0p1nn 11524 . . . . . . . . . . . 12 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
3028, 29syl 17 . . . . . . . . . . 11 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
31 elfzuz 12531 . . . . . . . . . . 11 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
32 eluznn 11951 . . . . . . . . . . 11 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
3330, 31, 32syl2an 495 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
3433nnrpd 12063 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
35 pntpbnd.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
3635pntrf 25451 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
3736ffvelrni 6521 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
3834, 37syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
3933peano2nnd 11229 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
4033, 39nnmulcld 11260 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
4138, 40nndivred 11261 . . . . . . 7 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4241adantlr 753 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
431, 42fsumrecl 14664 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
4438adantlr 753 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
45 fveq2 6352 . . . . . . . . . 10 (𝑖 = 𝑛 → (𝑅𝑖) = (𝑅𝑛))
4645breq2d 4816 . . . . . . . . 9 (𝑖 = 𝑛 → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅𝑛)))
4746rspccva 3448 . . . . . . . 8 ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (𝑅𝑛))
4847adantll 752 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (𝑅𝑛))
4940adantlr 753 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
5049nnred 11227 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℝ)
5149nngt0d 11256 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 < (𝑛 · (𝑛 + 1)))
52 divge0 11084 . . . . . . 7 ((((𝑅𝑛) ∈ ℝ ∧ 0 ≤ (𝑅𝑛)) ∧ ((𝑛 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 + 1)))) → 0 ≤ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5344, 48, 50, 51, 52syl22anc 1478 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
541, 42, 53fsumge0 14726 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → 0 ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5543, 54absidd 14360 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5642, 53absidd 14360 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5756sumeq2dv 14632 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5855, 57eqtr4d 2797 . . 3 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
59 fzfid 12966 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
6041adantlr 753 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
6160recnd 10260 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
6259, 61fsumneg 14718 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
6338adantlr 753 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
6463renegcld 10649 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -(𝑅𝑛) ∈ ℝ)
6545breq1d 4814 . . . . . . . . . . . 12 (𝑖 = 𝑛 → ((𝑅𝑖) ≤ 0 ↔ (𝑅𝑛) ≤ 0))
6665rspccva 3448 . . . . . . . . . . 11 ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0 ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ≤ 0)
6766adantll 752 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ≤ 0)
6863le0neg1d 10791 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) ≤ 0 ↔ 0 ≤ -(𝑅𝑛)))
6967, 68mpbid 222 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ -(𝑅𝑛))
7040adantlr 753 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
7170nnred 11227 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℝ)
7270nngt0d 11256 . . . . . . . . 9 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 < (𝑛 · (𝑛 + 1)))
73 divge0 11084 . . . . . . . . 9 (((-(𝑅𝑛) ∈ ℝ ∧ 0 ≤ -(𝑅𝑛)) ∧ ((𝑛 · (𝑛 + 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 + 1)))) → 0 ≤ (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7464, 69, 71, 72, 73syl22anc 1478 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7538recnd 10260 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
7640nncnd 11228 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℂ)
7740nnne0d 11257 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ≠ 0)
7875, 76, 77divnegd 11006 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
7978adantlr 753 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = (-(𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8074, 79breqtrrd 4832 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 0 ≤ -((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8160le0neg1d 10791 . . . . . . 7 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0 ↔ 0 ≤ -((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
8280, 81mpbird 247 . . . . . 6 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0)
8360, 82absnidd 14351 . . . . 5 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = -((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8483sumeq2dv 14632 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8559, 60fsumrecl 14664 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
8660renegcld 10649 . . . . . . . 8 (((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) ∧ 𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
8759, 86, 80fsumge0 14726 . . . . . . 7 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → 0 ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8887, 62breqtrd 4830 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → 0 ≤ -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
8985le0neg1d 10791 . . . . . 6 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0 ↔ 0 ≤ -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
9088, 89mpbird 247 . . . . 5 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ≤ 0)
9185, 90absnidd 14351 . . . 4 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = -Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
9262, 84, 913eqtr4rd 2805 . . 3 ((𝜑 ∧ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
93 pntpbnd1.c . . . . . . . . . . . . 13 𝐶 = (𝐴 + 2)
94 pntpbnd1.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ+)
95 2rp 12030 . . . . . . . . . . . . . 14 2 ∈ ℝ+
96 rpaddcl 12047 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
9794, 95, 96sylancl 697 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 2) ∈ ℝ+)
9893, 97syl5eqel 2843 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
9998, 14rpdivcld 12082 . . . . . . . . . . 11 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
10099rpred 12065 . . . . . . . . . 10 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
101100reefcld 15017 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
102 pnfxr 10284 . . . . . . . . 9 +∞ ∈ ℝ*
103 icossre 12447 . . . . . . . . 9 (((exp‘(𝐶 / 𝐸)) ∈ ℝ ∧ +∞ ∈ ℝ*) → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
104101, 102, 103sylancl 697 . . . . . . . 8 (𝜑 → ((exp‘(𝐶 / 𝐸))[,)+∞) ⊆ ℝ)
105 pntpbnd1.k . . . . . . . 8 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
106104, 105sseldd 3745 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
107106, 4remulcld 10262 . . . . . 6 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
1084recnd 10260 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
109108mulid2d 10250 . . . . . . . 8 (𝜑 → (1 · 𝑌) = 𝑌)
110 1red 10247 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
111 efgt1 15045 . . . . . . . . . . 11 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
11299, 111syl 17 . . . . . . . . . 10 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
113 elicopnf 12462 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
114101, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
115114simplbda 655 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
116105, 115mpdan 705 . . . . . . . . . 10 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
117110, 101, 106, 112, 116ltletrd 10389 . . . . . . . . 9 (𝜑 → 1 < 𝐾)
118 ltmul1 11065 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 < 𝐾 ↔ (1 · 𝑌) < (𝐾 · 𝑌)))
119110, 106, 4, 25, 118syl112anc 1481 . . . . . . . . 9 (𝜑 → (1 < 𝐾 ↔ (1 · 𝑌) < (𝐾 · 𝑌)))
120117, 119mpbid 222 . . . . . . . 8 (𝜑 → (1 · 𝑌) < (𝐾 · 𝑌))
121109, 120eqbrtrrd 4828 . . . . . . 7 (𝜑𝑌 < (𝐾 · 𝑌))
1224, 107, 121ltled 10377 . . . . . 6 (𝜑𝑌 ≤ (𝐾 · 𝑌))
123 flword2 12808 . . . . . 6 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)))
1244, 107, 122, 123syl3anc 1477 . . . . 5 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)))
125107flcld 12793 . . . . . 6 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
126 uzid 11894 . . . . . 6 ((⌊‘(𝐾 · 𝑌)) ∈ ℤ → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌))))
127125, 126syl 17 . . . . 5 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌))))
128 elfzuzb 12529 . . . . 5 ((⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) ∧ (⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘(𝐾 · 𝑌)))))
129124, 127, 128sylanbrc 701 . . . 4 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))))
130 oveq2 6821 . . . . . . . 8 (𝑥 = (⌊‘𝑌) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(⌊‘𝑌)))
131130raleqdv 3283 . . . . . . 7 (𝑥 = (⌊‘𝑌) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖)))
132130raleqdv 3283 . . . . . . 7 (𝑥 = (⌊‘𝑌) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0))
133131, 132orbi12d 748 . . . . . 6 (𝑥 = (⌊‘𝑌) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)))
134133imbi2d 329 . . . . 5 (𝑥 = (⌊‘𝑌) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0))))
135 oveq2 6821 . . . . . . . 8 (𝑥 = 𝑚 → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...𝑚))
136135raleqdv 3283 . . . . . . 7 (𝑥 = 𝑚 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖)))
137135raleqdv 3283 . . . . . . 7 (𝑥 = 𝑚 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0))
138136, 137orbi12d 748 . . . . . 6 (𝑥 = 𝑚 → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0)))
139138imbi2d 329 . . . . 5 (𝑥 = 𝑚 → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0))))
140 oveq2 6821 . . . . . . . 8 (𝑥 = (𝑚 + 1) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(𝑚 + 1)))
141140raleqdv 3283 . . . . . . 7 (𝑥 = (𝑚 + 1) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖)))
142140raleqdv 3283 . . . . . . 7 (𝑥 = (𝑚 + 1) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
143141, 142orbi12d 748 . . . . . 6 (𝑥 = (𝑚 + 1) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
144143imbi2d 329 . . . . 5 (𝑥 = (𝑚 + 1) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
145 oveq2 6821 . . . . . . . 8 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (((⌊‘𝑌) + 1)...𝑥) = (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))
146145raleqdv 3283 . . . . . . 7 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖)))
147145raleqdv 3283 . . . . . . 7 (𝑥 = (⌊‘(𝐾 · 𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))
148146, 147orbi12d 748 . . . . . 6 (𝑥 = (⌊‘(𝐾 · 𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0)))
149148imbi2d 329 . . . . 5 (𝑥 = (⌊‘(𝐾 · 𝑌)) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑥)(𝑅𝑖) ≤ 0)) ↔ (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))))
150 elfzle3 12540 . . . . . . . . 9 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌))
151 elfzel2 12533 . . . . . . . . . . . 12 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) ∈ ℤ)
152151zred 11674 . . . . . . . . . . 11 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) ∈ ℝ)
153152ltp1d 11146 . . . . . . . . . 10 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
154 peano2re 10401 . . . . . . . . . . . 12 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
155152, 154syl 17 . . . . . . . . . . 11 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) + 1) ∈ ℝ)
156152, 155ltnled 10376 . . . . . . . . . 10 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ((⌊‘𝑌) < ((⌊‘𝑌) + 1) ↔ ¬ ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌)))
157153, 156mpbid 222 . . . . . . . . 9 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → ¬ ((⌊‘𝑌) + 1) ≤ (⌊‘𝑌))
158150, 157pm2.21dd 186 . . . . . . . 8 (𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌)) → (𝑅𝑖) ≤ 0)
159158rgen 3060 . . . . . . 7 𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0
160159olci 405 . . . . . 6 (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)
1611602a1i 12 . . . . 5 ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘𝑌))(𝑅𝑖) ≤ 0)))
162 elfzofz 12679 . . . . . . . . . 10 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))))
163 elfzp12 12612 . . . . . . . . . . 11 ((⌊‘(𝐾 · 𝑌)) ∈ (ℤ‘(⌊‘𝑌)) → (𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
164124, 163syl 17 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) ↔ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
165162, 164syl5ib 234 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))))
166165imp 444 . . . . . . . 8 ((𝜑𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌)))) → (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
16730nnrpd 12063 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
16836ffvelrni 6521 . . . . . . . . . . . . . 14 (((⌊‘𝑌) + 1) ∈ ℝ+ → (𝑅‘((⌊‘𝑌) + 1)) ∈ ℝ)
169167, 168syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑅‘((⌊‘𝑌) + 1)) ∈ ℝ)
1705, 169letrid 10381 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
171170adantr 472 . . . . . . . . . . 11 ((𝜑𝑚 = (⌊‘𝑌)) → (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
172 oveq1 6820 . . . . . . . . . . . . . . . 16 (𝑚 = (⌊‘𝑌) → (𝑚 + 1) = ((⌊‘𝑌) + 1))
173172oveq2d 6829 . . . . . . . . . . . . . . 15 (𝑚 = (⌊‘𝑌) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)))
1744flcld 12793 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
175174peano2zd 11677 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
176 fzsn 12576 . . . . . . . . . . . . . . . 16 (((⌊‘𝑌) + 1) ∈ ℤ → (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)) = {((⌊‘𝑌) + 1)})
177175, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘𝑌) + 1)...((⌊‘𝑌) + 1)) = {((⌊‘𝑌) + 1)})
178173, 177sylan9eqr 2816 . . . . . . . . . . . . . 14 ((𝜑𝑚 = (⌊‘𝑌)) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = {((⌊‘𝑌) + 1)})
179178raleqdv 3283 . . . . . . . . . . . . 13 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ {((⌊‘𝑌) + 1)}0 ≤ (𝑅𝑖)))
180 ovex 6841 . . . . . . . . . . . . . 14 ((⌊‘𝑌) + 1) ∈ V
181 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑖 = ((⌊‘𝑌) + 1) → (𝑅𝑖) = (𝑅‘((⌊‘𝑌) + 1)))
182181breq2d 4816 . . . . . . . . . . . . . 14 (𝑖 = ((⌊‘𝑌) + 1) → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1))))
183180, 182ralsn 4366 . . . . . . . . . . . . 13 (∀𝑖 ∈ {((⌊‘𝑌) + 1)}0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1)))
184179, 183syl6bb 276 . . . . . . . . . . . 12 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘((⌊‘𝑌) + 1))))
185178raleqdv 3283 . . . . . . . . . . . . 13 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ {((⌊‘𝑌) + 1)} (𝑅𝑖) ≤ 0))
186181breq1d 4814 . . . . . . . . . . . . . 14 (𝑖 = ((⌊‘𝑌) + 1) → ((𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
187180, 186ralsn 4366 . . . . . . . . . . . . 13 (∀𝑖 ∈ {((⌊‘𝑌) + 1)} (𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0)
188185, 187syl6bb 276 . . . . . . . . . . . 12 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0))
189184, 188orbi12d 748 . . . . . . . . . . 11 ((𝜑𝑚 = (⌊‘𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0) ↔ (0 ≤ (𝑅‘((⌊‘𝑌) + 1)) ∨ (𝑅‘((⌊‘𝑌) + 1)) ≤ 0)))
190171, 189mpbird 247 . . . . . . . . . 10 ((𝜑𝑚 = (⌊‘𝑌)) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
191190a1d 25 . . . . . . . . 9 ((𝜑𝑚 = (⌊‘𝑌)) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
192 elfzuz 12531 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)))
193192adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)))
194 eluzfz2 12542 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)) → 𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚))
195193, 194syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚))
196 fveq2 6352 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑚 → (𝑅𝑖) = (𝑅𝑚))
197196breq2d 4816 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅𝑚)))
198197rspcv 3445 . . . . . . . . . . . . . . 15 (𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅𝑚)))
199195, 198syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅𝑚)))
200 pntpbnd1.3 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
201200adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
202 eluznn 11951 . . . . . . . . . . . . . . . . . . . . 21 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑚 ∈ ℕ)
20330, 192, 202syl2an 495 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ ℕ)
204203adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝑚 ∈ ℕ)
205 elfzle1 12537 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑚)
206205adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑚)
207 elfzelz 12535 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ∈ ℤ)
208 zltp1le 11619 . . . . . . . . . . . . . . . . . . . . . . . 24 (((⌊‘𝑌) ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((⌊‘𝑌) < 𝑚 ↔ ((⌊‘𝑌) + 1) ≤ 𝑚))
209174, 207, 208syl2an 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑚 ↔ ((⌊‘𝑌) + 1) ≤ 𝑚))
210206, 209mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑚)
211 fllt 12801 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑌 < 𝑚 ↔ (⌊‘𝑌) < 𝑚))
2124, 207, 211syl2an 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑚 ↔ (⌊‘𝑌) < 𝑚))
213210, 212mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑚)
214 elfzle2 12538 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑚 ≤ (⌊‘(𝐾 · 𝑌)))
215214adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ≤ (⌊‘(𝐾 · 𝑌)))
216 flge 12800 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (⌊‘(𝐾 · 𝑌))))
217107, 207, 216syl2an 495 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (⌊‘(𝐾 · 𝑌))))
218215, 217mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ≤ (𝐾 · 𝑌))
219213, 218jca 555 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)))
220219adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)))
2219ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝐸 ∈ (0(,)1))
2223ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → 𝑌 ∈ (𝑋(,)+∞))
223 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
22435, 221, 6, 222, 204, 220, 223pntpbnd1a 25473 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)
225 breq2 4808 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (𝑌 < 𝑦𝑌 < 𝑚))
226 breq1 4807 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑚 ≤ (𝐾 · 𝑌)))
227225, 226anbi12d 749 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑚 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌))))
228 fveq2 6352 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑚 → (𝑅𝑦) = (𝑅𝑚))
229 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑚𝑦 = 𝑚)
230228, 229oveq12d 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑚 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑚) / 𝑚))
231230fveq2d 6356 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑚 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑚) / 𝑚)))
232231breq1d 4814 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑚 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸))
233227, 232anbi12d 749 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑚 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)))
234233rspcev 3449 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ ((𝑌 < 𝑚𝑚 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑚) / 𝑚)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
235204, 220, 224, 234syl12anc 1475 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
236201, 235mtand 694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
237236adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
238203nnrpd 12063 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑚 ∈ ℝ+)
23936ffvelrni 6521 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℝ+ → (𝑅𝑚) ∈ ℝ)
240238, 239syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑚) ∈ ℝ)
241240adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ∈ ℝ)
242241recnd 10260 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ∈ ℂ)
243242subid1d 10573 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → ((𝑅𝑚) − 0) = (𝑅𝑚))
244203peano2nnd 11229 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 + 1) ∈ ℕ)
245244nnrpd 12063 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑚 + 1) ∈ ℝ+)
24636ffvelrni 6521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 + 1) ∈ ℝ+ → (𝑅‘(𝑚 + 1)) ∈ ℝ)
247245, 246syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
248247adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
249 0red 10233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → 0 ∈ ℝ)
250 0re 10232 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
251 letric 10329 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ (𝑅‘(𝑚 + 1)) ∈ ℝ) → (0 ≤ (𝑅‘(𝑚 + 1)) ∨ (𝑅‘(𝑚 + 1)) ≤ 0))
252250, 247, 251sylancr 698 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (0 ≤ (𝑅‘(𝑚 + 1)) ∨ (𝑅‘(𝑚 + 1)) ≤ 0))
253252ord 391 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ 0 ≤ (𝑅‘(𝑚 + 1)) → (𝑅‘(𝑚 + 1)) ≤ 0))
254253imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1))) → (𝑅‘(𝑚 + 1)) ≤ 0)
255254adantrl 754 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ≤ 0)
256248, 249, 241, 255lesub2dd 10836 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → ((𝑅𝑚) − 0) ≤ ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
257243, 256eqbrtrrd 4828 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅𝑚) ≤ ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
258 simprl 811 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → 0 ≤ (𝑅𝑚))
259241, 258absidd 14360 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘(𝑅𝑚)) = (𝑅𝑚))
260248, 249, 241, 255, 258letrd 10386 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (𝑅‘(𝑚 + 1)) ≤ (𝑅𝑚))
261248, 241, 260abssuble0d 14370 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))) = ((𝑅𝑚) − (𝑅‘(𝑚 + 1))))
262257, 259, 2613brtr4d 4836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (0 ≤ (𝑅𝑚) ∧ ¬ 0 ≤ (𝑅‘(𝑚 + 1)))) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
263262expr 644 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → (¬ 0 ≤ (𝑅‘(𝑚 + 1)) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))))
264237, 263mt3d 140 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ 0 ≤ (𝑅𝑚)) → 0 ≤ (𝑅‘(𝑚 + 1)))
265264ex 449 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (0 ≤ (𝑅𝑚) → 0 ≤ (𝑅‘(𝑚 + 1))))
266199, 265syld 47 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → 0 ≤ (𝑅‘(𝑚 + 1))))
267 ovex 6841 . . . . . . . . . . . . . 14 (𝑚 + 1) ∈ V
268 fveq2 6352 . . . . . . . . . . . . . . 15 (𝑖 = (𝑚 + 1) → (𝑅𝑖) = (𝑅‘(𝑚 + 1)))
269268breq2d 4816 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → (0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘(𝑚 + 1))))
270267, 269ralsn 4366 . . . . . . . . . . . . 13 (∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖) ↔ 0 ≤ (𝑅‘(𝑚 + 1)))
271266, 270syl6ibr 242 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖)))
272271ancld 577 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖))))
273 fzsuc 12581 . . . . . . . . . . . . . 14 (𝑚 ∈ (ℤ‘((⌊‘𝑌) + 1)) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)}))
274193, 273syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((⌊‘𝑌) + 1)...(𝑚 + 1)) = ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)}))
275274raleqdv 3283 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ ∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})0 ≤ (𝑅𝑖)))
276 ralunb 3937 . . . . . . . . . . . 12 (∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})0 ≤ (𝑅𝑖) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖)))
277275, 276syl6bb 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∧ ∀𝑖 ∈ {(𝑚 + 1)}0 ≤ (𝑅𝑖))))
278272, 277sylibrd 249 . . . . . . . . . 10 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) → ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖)))
279196breq1d 4814 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑚 → ((𝑅𝑖) ≤ 0 ↔ (𝑅𝑚) ≤ 0))
280279rspcv 3445 . . . . . . . . . . . . . . 15 (𝑚 ∈ (((⌊‘𝑌) + 1)...𝑚) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅𝑚) ≤ 0))
281195, 280syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅𝑚) ≤ 0))
282236adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → ¬ (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
283253con1d 139 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (𝑅‘(𝑚 + 1)) ≤ 0 → 0 ≤ (𝑅‘(𝑚 + 1))))
284283imp 444 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0) → 0 ≤ (𝑅‘(𝑚 + 1)))
285284adantrl 754 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → 0 ≤ (𝑅‘(𝑚 + 1)))
286240adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ∈ ℝ)
287286renegcld 10649 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ∈ ℝ)
288247adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅‘(𝑚 + 1)) ∈ ℝ)
289287, 288addge02d 10808 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (0 ≤ (𝑅‘(𝑚 + 1)) ↔ -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚))))
290285, 289mpbid 222 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚)))
291288recnd 10260 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅‘(𝑚 + 1)) ∈ ℂ)
292286recnd 10260 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ∈ ℂ)
293291, 292negsubd 10590 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → ((𝑅‘(𝑚 + 1)) + -(𝑅𝑚)) = ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
294290, 293breqtrd 4830 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → -(𝑅𝑚) ≤ ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
295 simprl 811 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ≤ 0)
296286, 295absnidd 14351 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘(𝑅𝑚)) = -(𝑅𝑚))
297 0red 10233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → 0 ∈ ℝ)
298286, 297, 288, 295, 285letrd 10386 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (𝑅𝑚) ≤ (𝑅‘(𝑚 + 1)))
299286, 288, 298abssubge0d 14369 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))) = ((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))
300294, 296, 2993brtr4d 4836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ ((𝑅𝑚) ≤ 0 ∧ ¬ (𝑅‘(𝑚 + 1)) ≤ 0)) → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚))))
301300expr 644 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → (¬ (𝑅‘(𝑚 + 1)) ≤ 0 → (abs‘(𝑅𝑚)) ≤ (abs‘((𝑅‘(𝑚 + 1)) − (𝑅𝑚)))))
302282, 301mt3d 140 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) ∧ (𝑅𝑚) ≤ 0) → (𝑅‘(𝑚 + 1)) ≤ 0)
303302ex 449 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑚) ≤ 0 → (𝑅‘(𝑚 + 1)) ≤ 0))
304281, 303syld 47 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (𝑅‘(𝑚 + 1)) ≤ 0))
305268breq1d 4814 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → ((𝑅𝑖) ≤ 0 ↔ (𝑅‘(𝑚 + 1)) ≤ 0))
306267, 305ralsn 4366 . . . . . . . . . . . . 13 (∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0 ↔ (𝑅‘(𝑚 + 1)) ≤ 0)
307304, 306syl6ibr 242 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0))
308307ancld 577 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0)))
309274raleqdv 3283 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ ∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})(𝑅𝑖) ≤ 0))
310 ralunb 3937 . . . . . . . . . . . 12 (∀𝑖 ∈ ((((⌊‘𝑌) + 1)...𝑚) ∪ {(𝑚 + 1)})(𝑅𝑖) ≤ 0 ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0))
311309, 310syl6bb 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0 ↔ (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 ∧ ∀𝑖 ∈ {(𝑚 + 1)} (𝑅𝑖) ≤ 0)))
312308, 311sylibrd 249 . . . . . . . . . 10 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0 → ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))
313278, 312orim12d 919 . . . . . . . . 9 ((𝜑𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
314191, 313jaodan 861 . . . . . . . 8 ((𝜑 ∧ (𝑚 = (⌊‘𝑌) ∨ 𝑚 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
315166, 314syldan 488 . . . . . . 7 ((𝜑𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌)))) → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0)))
316315expcom 450 . . . . . 6 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → (𝜑 → ((∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0) → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
317316a2d 29 . . . . 5 (𝑚 ∈ ((⌊‘𝑌)..^(⌊‘(𝐾 · 𝑌))) → ((𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...𝑚)(𝑅𝑖) ≤ 0)) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(𝑚 + 1))(𝑅𝑖) ≤ 0))))
318134, 139, 144, 149, 161, 317fzind2 12780 . . . 4 ((⌊‘(𝐾 · 𝑌)) ∈ ((⌊‘𝑌)...(⌊‘(𝐾 · 𝑌))) → (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0)))
319129, 318mpcom 38 . . 3 (𝜑 → (∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))0 ≤ (𝑅𝑖) ∨ ∀𝑖 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝑅𝑖) ≤ 0))
32058, 92, 319mpjaodan 862 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
321 pntpbnd1.2 . . 3 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
322 fveq2 6352 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
323 id 22 . . . . . . . . . 10 (𝑦 = 𝑛𝑦 = 𝑛)
324 oveq1 6820 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
325323, 324oveq12d 6831 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 · (𝑦 + 1)) = (𝑛 · (𝑛 + 1)))
326322, 325oveq12d 6831 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
327326cbvsumv 14625 . . . . . . 7 Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))
328 oveq1 6820 . . . . . . . 8 (𝑖 = ((⌊‘𝑌) + 1) → (𝑖...𝑗) = (((⌊‘𝑌) + 1)...𝑗))
329328sumeq1d 14630 . . . . . . 7 (𝑖 = ((⌊‘𝑌) + 1) → Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
330327, 329syl5eq 2806 . . . . . 6 (𝑖 = ((⌊‘𝑌) + 1) → Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
331330fveq2d 6356 . . . . 5 (𝑖 = ((⌊‘𝑌) + 1) → (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) = (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
332331breq1d 4814 . . . 4 (𝑖 = ((⌊‘𝑌) + 1) → ((abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴 ↔ (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴))
333 oveq2 6821 . . . . . . 7 (𝑗 = (⌊‘(𝐾 · 𝑌)) → (((⌊‘𝑌) + 1)...𝑗) = (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))))
334333sumeq1d 14630 . . . . . 6 (𝑗 = (⌊‘(𝐾 · 𝑌)) → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
335334fveq2d 6356 . . . . 5 (𝑗 = (⌊‘(𝐾 · 𝑌)) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336335breq1d 4814 . . . 4 (𝑗 = (⌊‘(𝐾 · 𝑌)) → ((abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴 ↔ (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴))
337332, 336rspc2va 3462 . . 3 (((((⌊‘𝑌) + 1) ∈ ℕ ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℤ) ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
33830, 125, 321, 337syl21anc 1476 . 2 (𝜑 → (abs‘Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
339320, 338eqbrtrrd 4828 1 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cun 3713  wss 3715  {csn 4321   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263  *cxr 10265   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  +crp 12025  (,)cioo 12368  [,)cico 12370  ...cfz 12519  ..^cfzo 12659  cfl 12785  abscabs 14173  Σcsu 14615  expce 14991  ψcchp 25018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-prm 15588  df-pc 15744  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-vma 25023  df-chp 25024
This theorem is referenced by:  pntpbnd2  25475
  Copyright terms: Public domain W3C validator