Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   GIF version

Theorem pntrlog2bnd 25190
 Description: A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Distinct variable groups:   𝑥,𝑛,𝑐,𝑅   𝑎,𝑐,𝑛,𝑥,𝐴
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrlog2bnd
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12185 . . 3 (1(,)+∞) ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1(,)+∞) ⊆ ℝ)
3 1red 10007 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
42sselda 3587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 11788 . . . . . . . . . 10 1 ∈ ℝ+
65a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 10007 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 12183 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 475 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 10137 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 11863 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntpbnd.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 25169 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1514ffvelrni 6319 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1716recnd 10020 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1817abscld 14117 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1912relogcld 24290 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2018, 19remulcld 10022 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
21 2re 11042 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
234, 10rplogcld 24296 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2422, 23rerpdivcld 11855 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
25 fzfid 12720 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
2612adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑥 ∈ ℝ+)
27 elfznn 12320 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴))) → 𝑛 ∈ ℕ)
2827adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
2928nnrpd 11822 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 11841 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑥 / 𝑛) ∈ ℝ+)
3114ffvelrni 6319 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 10020 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 14117 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 24290 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
3634, 35remulcld 10022 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3725, 36fsumrecl 14406 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3824, 37remulcld 10022 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3920, 38resubcld 10410 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
4039, 12rerpdivcld 11855 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
4113pntrmax 25170 . . 3 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐
42 eqid 2621 . . . . 5 (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
43 eqid 2621 . . . . 5 (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
44 simprl 793 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝑐 ∈ ℝ+)
45 simprr 795 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)
46 simpll 789 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝐴 ∈ ℝ)
47 simplr 791 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 1 ≤ 𝐴)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 25189 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
4948rexlimdvaa 3026 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)))
5041, 49mpi 20 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
51 simprl 793 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
52 chpcl 24767 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
5351, 52syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
5453, 51readdcld 10021 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
555a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
56 simprr 795 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5751, 55, 56rpgecld 11863 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5857relogcld 24290 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5954, 58remulcld 10022 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6040adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
6153ad2ant2r 782 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
62 simprll 801 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
6361, 62readdcld 10021 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
6457ad2ant2r 782 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6564relogcld 24290 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
6663, 65remulcld 10022 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6712adantr 481 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
6866, 67rerpdivcld 11855 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ∈ ℝ)
6916adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℝ)
7069recnd 10020 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℂ)
7170abscld 14117 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ∈ ℝ)
7267relogcld 24290 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
7371, 72remulcld 10022 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
7424adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 / (log‘𝑥)) ∈ ℝ)
7537adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7674, 75remulcld 10022 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
7773, 76resubcld 10410 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
7821a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
794adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
8010adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 < 𝑥)
8179, 80rplogcld 24296 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ+)
82 2rp 11789 . . . . . . . . . 10 2 ∈ ℝ+
8382a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
8483rpge0d 11828 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
8578, 81, 84divge0d 11864 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 / (log‘𝑥)))
86 fzfid 12720 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
8736adantlr 750 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
8833adantlr 750 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8988abscld 14117 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
9029adantlr 750 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
9190relogcld 24290 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
9288absge0d 14125 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9390rpred 11824 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ)
9427adantl 482 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
9594nnge1d 11015 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 1 ≤ 𝑛)
9693, 95logge0d 24297 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (log‘𝑛))
9789, 91, 92, 96mulge0d 10556 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9886, 87, 97fsumge0 14465 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9974, 75, 85, 98mulge0d 10556 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10073, 76subge02d 10571 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ↔ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥))))
10199, 100mpbid 222 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥)))
10270absge0d 14125 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (abs‘(𝑅𝑥)))
10381rpge0d 11828 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
104 chpcl 24767 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
10579, 104syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ)
106105, 79readdcld 10021 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
10713pntrval 25168 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
10867, 107syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
109108fveq2d 6157 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) = (abs‘((ψ‘𝑥) − 𝑥)))
110105recnd 10020 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℂ)
11179recnd 10020 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
112110, 111abs2dif2d 14139 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((abs‘(ψ‘𝑥)) + (abs‘𝑥)))
113 chpge0 24769 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
11479, 113syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥))
115105, 114absidd 14103 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(ψ‘𝑥)) = (ψ‘𝑥))
11667rpge0d 11828 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑥)
11779, 116absidd 14103 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝑥) = 𝑥)
118115, 117oveq12d 6628 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(ψ‘𝑥)) + (abs‘𝑥)) = ((ψ‘𝑥) + 𝑥))
119112, 118breqtrd 4644 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
120109, 119eqbrtrd 4640 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
121 simprr 795 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
12279, 62, 121ltled 10137 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
123 chpwordi 24800 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
12479, 62, 122, 123syl3anc 1323 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦))
125105, 79, 61, 62, 124, 122le2addd 10598 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ≤ ((ψ‘𝑦) + 𝑦))
12671, 106, 63, 120, 125letrd 10146 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑦) + 𝑦))
12767, 64logled 24294 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
128122, 127mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 10918 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13077, 73, 66, 101, 129letrd 10146 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13177, 66, 67, 130lediv1dd 11882 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥))
1325a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
133 chpge0 24769 . . . . . . . 8 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
13462, 133syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
13564rpge0d 11828 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑦)
13661, 62, 134, 135addge0d 10555 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) + 𝑦))
137 simprlr 802 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑦)
13862, 137logge0d 24297 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑦))
13963, 65, 136, 138mulge0d 10556 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14011adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
141132, 67, 66, 139, 140lediv2ad 11846 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1))
14261recnd 10020 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℂ)
14362recnd 10020 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
144142, 143addcld 10011 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℂ)
14565recnd 10020 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℂ)
146144, 145mulcld 10012 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℂ)
147146div1d 10745 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1) = (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
148141, 147breqtrd 4644 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14960, 68, 66, 131, 148letrd 10146 . 2 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
1502, 3, 40, 50, 59, 149lo1bddrp 14198 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ⊆ wss 3559  ifcif 4063   class class class wbr 4618   ↦ cmpt 4678  ‘cfv 5852  (class class class)co 6610  ℂcc 9886  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  +∞cpnf 10023   < clt 10026   ≤ cle 10027   − cmin 10218   / cdiv 10636  ℕcn 10972  2c2 11022  ℝ+crp 11784  (,)cioo 12125  ...cfz 12276  ⌊cfl 12539  abscabs 13916  ≤𝑂(1)clo1 14160  Σcsu 14358  logclog 24222  Λcvma 24735  ψcchp 24736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-xnn0 11316  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-o1 14163  df-lo1 14164  df-sum 14359  df-ef 14734  df-e 14735  df-sin 14736  df-cos 14737  df-pi 14739  df-dvds 14919  df-gcd 15152  df-prm 15321  df-pc 15477  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224  df-cxp 24225  df-em 24636  df-cht 24740  df-vma 24741  df-chp 24742  df-ppi 24743  df-mu 24744 This theorem is referenced by:  pntlemp  25216
 Copyright terms: Public domain W3C validator