MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem4 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem4 25203
Description: Lemma for pntrlog2bnd 25207. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
Assertion
Ref Expression
pntrlog2bndlem4 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥   𝑆,𝑛,𝑥   𝑅,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem4
Dummy variables 𝑐 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12163 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 482 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 11796 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
43a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
5 1red 10015 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 12191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 475 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 10145 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 11871 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1110rprege0d 11839 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
12 flge0nn0 12577 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
1311, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ0)
14 nn0p1nn 11292 . . . . . . . . . . . . . . . . . . . 20 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℕ)
1615nnrpd 11830 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℝ+)
1710, 16rpdivcld 11849 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+)
18 pntrlog2bnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1918pntrval 25185 . . . . . . . . . . . . . . . . 17 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
2017, 19syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))))
212, 15nndivred 11029 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ)
22 2re 11050 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
2322a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
24 flltp1 12557 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → 𝑥 < ((⌊‘𝑥) + 1))
252, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < ((⌊‘𝑥) + 1))
2615nncnd 10996 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ ℂ)
2726mulid1d 10017 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) · 1) = ((⌊‘𝑥) + 1))
2825, 27breqtrrd 4651 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 < (((⌊‘𝑥) + 1) · 1))
292, 5, 16ltdivmuld 11883 . . . . . . . . . . . . . . . . . . . 20 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) < 1 ↔ 𝑥 < (((⌊‘𝑥) + 1) · 1)))
3028, 29mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 1)
31 1lt2 11154 . . . . . . . . . . . . . . . . . . . 20 1 < 2
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 2)
3321, 5, 23, 30, 32lttrd 10158 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) < 2)
34 chpeq0 24867 . . . . . . . . . . . . . . . . . . 19 ((𝑥 / ((⌊‘𝑥) + 1)) ∈ ℝ → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3521, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0 ↔ (𝑥 / ((⌊‘𝑥) + 1)) < 2))
3633, 35mpbird 247 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (ψ‘(𝑥 / ((⌊‘𝑥) + 1))) = 0)
3736oveq1d 6630 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((ψ‘(𝑥 / ((⌊‘𝑥) + 1))) − (𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3820, 37eqtrd 2655 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))) = (0 − (𝑥 / ((⌊‘𝑥) + 1))))
3938fveq2d 6162 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))))
40 0red 10001 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ∈ ℝ)
4117rpge0d 11836 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 / ((⌊‘𝑥) + 1)))
4240, 21, 41abssuble0d 14121 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(0 − (𝑥 / ((⌊‘𝑥) + 1)))) = ((𝑥 / ((⌊‘𝑥) + 1)) − 0))
4321recnd 10028 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ∈ ℂ)
4443subid1d 10341 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) − 0) = (𝑥 / ((⌊‘𝑥) + 1)))
4539, 42, 443eqtrd 2659 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) = (𝑥 / ((⌊‘𝑥) + 1)))
4613nn0red 11312 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ)
47 pntsval.1 . . . . . . . . . . . . . . . . 17 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
4847pntsval2 25199 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
4946, 48syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(⌊‘𝑥)) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
5013nn0cnd 11313 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℂ)
51 1cnd 10016 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
5250, 51pncand 10353 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
5352fveq2d 6162 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆‘(⌊‘𝑥)))
5447pntsval2 25199 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
552, 54syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
56 flidm 12566 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
572, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘(⌊‘𝑥)) = (⌊‘𝑥))
5857oveq2d 6631 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(⌊‘𝑥))) = (1...(⌊‘𝑥)))
5958sumeq1d 14381 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6055, 59eqtr4d 2658 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) = Σ𝑛 ∈ (1...(⌊‘(⌊‘𝑥)))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
6149, 53, 603eqtr4d 2665 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆‘(((⌊‘𝑥) + 1) − 1)) = (𝑆𝑥))
6252fveq2d 6162 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(((⌊‘𝑥) + 1) − 1)) = (𝑇‘(⌊‘𝑥)))
6362oveq2d 6631 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))) = (2 · (𝑇‘(⌊‘𝑥))))
6461, 63oveq12d 6633 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))) = ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))))
6545, 64oveq12d 6633 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
662recnd 10028 . . . . . . . . . . . . . . . . . . 19 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
6766div1d 10753 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
6867fveq2d 6162 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) = (𝑅𝑥))
6918pntrf 25186 . . . . . . . . . . . . . . . . . . 19 𝑅:ℝ+⟶ℝ
7069ffvelrni 6324 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
7110, 70syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
7268, 71eqeltrd 2698 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℝ)
7372recnd 10028 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅‘(𝑥 / 1)) ∈ ℂ)
7473abscld 14125 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℝ)
7574recnd 10028 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅‘(𝑥 / 1))) ∈ ℂ)
7675mul01d 10195 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅‘(𝑥 / 1))) · 0) = 0)
7765, 76oveq12d 6633 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0))
7847pntsf 25196 . . . . . . . . . . . . . . . . 17 𝑆:ℝ⟶ℝ
7978ffvelrni 6324 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (𝑆𝑥) ∈ ℝ)
802, 79syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℝ)
81 pntrlog2bnd.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
82 relogcl 24260 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+ → (log‘𝑎) ∈ ℝ)
83 remulcl 9981 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ ∧ (log‘𝑎) ∈ ℝ) → (𝑎 · (log‘𝑎)) ∈ ℝ)
8482, 83sylan2 491 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑎 ∈ ℝ+) → (𝑎 · (log‘𝑎)) ∈ ℝ)
85 0red 10001 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ ¬ 𝑎 ∈ ℝ+) → 0 ∈ ℝ)
8684, 85ifclda 4098 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℝ → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) ∈ ℝ)
8781, 86fmpti 6349 . . . . . . . . . . . . . . . . . 18 𝑇:ℝ⟶ℝ
8887ffvelrni 6324 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
8946, 88syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ∈ ℝ)
9023, 89remulcld 10030 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℝ)
9180, 90resubcld 10418 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℝ)
9221, 91remulcld 10030 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℝ)
9392recnd 10028 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) ∈ ℂ)
9493subid1d 10341 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − 0) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
9577, 94eqtrd 2655 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) = ((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))))
962flcld 12555 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℤ)
97 fzval3 12493 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9896, 97syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
9998eqcomd 2627 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
10010adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
101 elfznn 12328 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
102101adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
103102nnrpd 11830 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
104100, 103rpdivcld 11849 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
10569ffvelrni 6324 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
107106recnd 10028 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
108107abscld 14125 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
109108recnd 10028 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
1103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
111103, 110rpaddcld 11847 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
112100, 111rpdivcld 11849 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
11369ffvelrni 6324 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
114112, 113syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
115114recnd 10028 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
116115abscld 14125 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℝ)
117116recnd 10028 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℂ)
118109, 117negsubdi2d 10368 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) = ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))))
119118eqcomd 2627 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) = -((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))))
120102nncnd 10996 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
121 1cnd 10016 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
122120, 121pncand 10353 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
123122fveq2d 6162 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘((𝑛 + 1) − 1)) = (𝑆𝑛))
124122fveq2d 6162 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑇𝑛))
125 rpre 11799 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
126 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 ∈ ℝ+𝑛 ∈ ℝ+))
127 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛𝑎 = 𝑛)
128 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑛 → (log‘𝑎) = (log‘𝑛))
129127, 128oveq12d 6633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑛 → (𝑎 · (log‘𝑎)) = (𝑛 · (log‘𝑛)))
130126, 129ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑛 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
131 ovex 6643 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 · (log‘𝑛)) ∈ V
132 c0ex 9994 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
133131, 132ifex 4134 . . . . . . . . . . . . . . . . . . . . 21 if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) ∈ V
134130, 81, 133fvmpt 6249 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
135125, 134syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑇𝑛) = if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0))
136 iftrue 4070 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → if(𝑛 ∈ ℝ+, (𝑛 · (log‘𝑛)), 0) = (𝑛 · (log‘𝑛)))
137135, 136eqtrd 2655 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
138103, 137syl 17 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) = (𝑛 · (log‘𝑛)))
139124, 138eqtrd 2655 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘((𝑛 + 1) − 1)) = (𝑛 · (log‘𝑛)))
140139oveq2d 6631 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑛 · (log‘𝑛))))
141123, 140oveq12d 6633 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
142119, 141oveq12d 6633 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
143108, 116resubcld 10418 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℝ)
144143recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℂ)
145102nnred 10995 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
14678ffvelrni 6324 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
147145, 146syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
14822a1i 11 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
149103relogcld 24307 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
150145, 149remulcld 10030 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (log‘𝑛)) ∈ ℝ)
151148, 150remulcld 10030 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑛 · (log‘𝑛))) ∈ ℝ)
152147, 151resubcld 10418 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℝ)
153152recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℂ)
154144, 153mulneg1d 10443 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (-((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
155142, 154eqtrd 2655 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
15699, 155sumeq12rdv 14387 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
157 fzfid 12728 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
158143, 152remulcld 10030 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
159158recnd 10028 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
160157, 159fsumneg 14466 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))-(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
161156, 160eqtrd 2655 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
16295, 161oveq12d 6633 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
163 oveq2 6623 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑥 / 𝑚) = (𝑥 / 𝑛))
164163fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 𝑛)))
165164fveq2d 6162 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))))
166 oveq1 6622 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
167166fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑆‘(𝑚 − 1)) = (𝑆‘(𝑛 − 1)))
168166fveq2d 6162 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑇‘(𝑚 − 1)) = (𝑇‘(𝑛 − 1)))
169168oveq2d 6631 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(𝑛 − 1))))
170167, 169oveq12d 6633 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))
171165, 170jca 554 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 𝑛))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
172 oveq2 6623 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑥 / 𝑚) = (𝑥 / (𝑛 + 1)))
173172fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / (𝑛 + 1))))
174173fveq2d 6162 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))
175 oveq1 6622 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
176175fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘((𝑛 + 1) − 1)))
177175fveq2d 6162 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘((𝑛 + 1) − 1)))
178177oveq2d 6631 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘((𝑛 + 1) − 1))))
179176, 178oveq12d 6633 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))
180174, 179jca 554 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1))))))
181 oveq2 6623 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑥 / 𝑚) = (𝑥 / 1))
182181fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = 1 → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / 1)))
183182fveq2d 6162 . . . . . . . . . . . 12 (𝑚 = 1 → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))))
184 oveq1 6622 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
185 1m1e0 11049 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
186184, 185syl6eq 2671 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑚 − 1) = 0)
187186fveq2d 6162 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = (𝑆‘0))
188 0re 10000 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
189 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 0 → (⌊‘𝑎) = (⌊‘0))
190 0z 11348 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℤ
191 flid 12565 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ ℤ → (⌊‘0) = 0)
192190, 191ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (⌊‘0) = 0
193189, 192syl6eq 2671 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 0 → (⌊‘𝑎) = 0)
194193oveq2d 6631 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → (1...(⌊‘𝑎)) = (1...0))
195 fz10 12320 . . . . . . . . . . . . . . . . . . . 20 (1...0) = ∅
196194, 195syl6eq 2671 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → (1...(⌊‘𝑎)) = ∅)
197196sumeq1d 14381 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
198 sum0 14401 . . . . . . . . . . . . . . . . . 18 Σ𝑖 ∈ ∅ ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0
199197, 198syl6eq 2671 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = 0)
200199, 47, 132fvmpt 6249 . . . . . . . . . . . . . . . 16 (0 ∈ ℝ → (𝑆‘0) = 0)
201188, 200ax-mp 5 . . . . . . . . . . . . . . 15 (𝑆‘0) = 0
202187, 201syl6eq 2671 . . . . . . . . . . . . . 14 (𝑚 = 1 → (𝑆‘(𝑚 − 1)) = 0)
203186fveq2d 6162 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = (𝑇‘0))
204 rpne0 11808 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ ℝ+𝑎 ≠ 0)
205204necon2bi 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 0 → ¬ 𝑎 ∈ ℝ+)
206205iffalsed 4075 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 0 → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = 0)
207206, 81, 132fvmpt 6249 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (𝑇‘0) = 0)
208188, 207ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑇‘0) = 0
209203, 208syl6eq 2671 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑇‘(𝑚 − 1)) = 0)
210209oveq2d 6631 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = (2 · 0))
211 2t0e0 11143 . . . . . . . . . . . . . . 15 (2 · 0) = 0
212210, 211syl6eq 2671 . . . . . . . . . . . . . 14 (𝑚 = 1 → (2 · (𝑇‘(𝑚 − 1))) = 0)
213202, 212oveq12d 6633 . . . . . . . . . . . . 13 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = (0 − 0))
214 0m0e0 11090 . . . . . . . . . . . . 13 (0 − 0) = 0
215213, 214syl6eq 2671 . . . . . . . . . . . 12 (𝑚 = 1 → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0)
216183, 215jca 554 . . . . . . . . . . 11 (𝑚 = 1 → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / 1))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = 0))
217 oveq2 6623 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑥 / 𝑚) = (𝑥 / ((⌊‘𝑥) + 1)))
218217fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑅‘(𝑥 / 𝑚)) = (𝑅‘(𝑥 / ((⌊‘𝑥) + 1))))
219218fveq2d 6162 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))))
220 oveq1 6622 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 − 1) = (((⌊‘𝑥) + 1) − 1))
221220fveq2d 6162 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (𝑆‘(𝑚 − 1)) = (𝑆‘(((⌊‘𝑥) + 1) − 1)))
222220fveq2d 6162 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑇‘(𝑚 − 1)) = (𝑇‘(((⌊‘𝑥) + 1) − 1)))
223222oveq2d 6631 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (2 · (𝑇‘(𝑚 − 1))) = (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))
224221, 223oveq12d 6633 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1)))))
225219, 224jca 554 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → ((abs‘(𝑅‘(𝑥 / 𝑚))) = (abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) ∧ ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) = ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))))
226 nnuz 11683 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
22715, 226syl6eleq 2708 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
22810adantr 481 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑥 ∈ ℝ+)
229 elfznn 12328 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
230229adantl 482 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
231230nnrpd 11830 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ+)
232228, 231rpdivcld 11849 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑥 / 𝑚) ∈ ℝ+)
23369ffvelrni 6324 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑚) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
234232, 233syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℝ)
235234recnd 10028 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑅‘(𝑥 / 𝑚)) ∈ ℂ)
236235abscld 14125 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℝ)
237236recnd 10028 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (abs‘(𝑅‘(𝑥 / 𝑚))) ∈ ℂ)
238230nnred 10995 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
239 1red 10015 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 1 ∈ ℝ)
240238, 239resubcld 10418 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
24178ffvelrni 6324 . . . . . . . . . . . . . 14 ((𝑚 − 1) ∈ ℝ → (𝑆‘(𝑚 − 1)) ∈ ℝ)
242240, 241syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑆‘(𝑚 − 1)) ∈ ℝ)
24322a1i 11 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 2 ∈ ℝ)
24487ffvelrni 6324 . . . . . . . . . . . . . . 15 ((𝑚 − 1) ∈ ℝ → (𝑇‘(𝑚 − 1)) ∈ ℝ)
245240, 244syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑇‘(𝑚 − 1)) ∈ ℝ)
246243, 245remulcld 10030 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (2 · (𝑇‘(𝑚 − 1))) ∈ ℝ)
247242, 246resubcld 10418 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℝ)
248247recnd 10028 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((𝑆‘(𝑚 − 1)) − (2 · (𝑇‘(𝑚 − 1)))) ∈ ℂ)
249171, 180, 216, 225, 227, 237, 248fsumparts 14484 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))))
250147recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℂ)
25187ffvelrni 6324 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑇𝑛) ∈ ℝ)
252145, 251syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℝ)
253148, 252remulcld 10030 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℝ)
254253recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇𝑛)) ∈ ℂ)
255 1red 10015 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
256145, 255resubcld 10418 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
25778ffvelrni 6324 . . . . . . . . . . . . . . . 16 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) ∈ ℝ)
258256, 257syl 17 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℝ)
259258recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℂ)
26087ffvelrni 6324 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ → (𝑇‘(𝑛 − 1)) ∈ ℝ)
261256, 260syl 17 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℝ)
262148, 261remulcld 10030 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℝ)
263262recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘(𝑛 − 1))) ∈ ℂ)
264250, 254, 259, 263sub4d 10401 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
265124oveq2d 6631 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑇‘((𝑛 + 1) − 1))) = (2 · (𝑇𝑛)))
266123, 265oveq12d 6633 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) = ((𝑆𝑛) − (2 · (𝑇𝑛))))
267266oveq1d 6630 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (2 · (𝑇𝑛))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))))
268 2cnd 11053 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
269252recnd 10028 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇𝑛) ∈ ℂ)
270261recnd 10028 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇‘(𝑛 − 1)) ∈ ℂ)
271268, 269, 270subdid 10446 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) = ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1)))))
272271oveq2d 6631 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − ((2 · (𝑇𝑛)) − (2 · (𝑇‘(𝑛 − 1))))))
273264, 267, 2723eqtr4d 2665 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1))))) = (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
274273oveq2d 6631 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
27599, 274sumeq12rdv 14387 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))) − ((𝑆‘(𝑛 − 1)) − (2 · (𝑇‘(𝑛 − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
276249, 275eqtr3d 2657 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅‘(𝑥 / ((⌊‘𝑥) + 1)))) · ((𝑆‘(((⌊‘𝑥) + 1) − 1)) − (2 · (𝑇‘(((⌊‘𝑥) + 1) − 1))))) − ((abs‘(𝑅‘(𝑥 / 1))) · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) − (abs‘(𝑅‘(𝑥 / 𝑛)))) · ((𝑆‘((𝑛 + 1) − 1)) − (2 · (𝑇‘((𝑛 + 1) − 1)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
277157, 159fsumcl 14413 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
27893, 277subnegd 10359 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) − -Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
279162, 276, 2783eqtr3rd 2664 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
28010relogcld 24307 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
281280recnd 10028 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
28266, 281mulcomd 10021 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) = ((log‘𝑥) · 𝑥))
283279, 282oveq12d 6633 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
284147, 258resubcld 10418 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℝ)
285252, 261resubcld 10418 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℝ)
286148, 285remulcld 10030 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
287284, 286resubcld 10418 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℝ)
288108, 287remulcld 10030 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
289157, 288fsumrecl 14414 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℝ)
290289recnd 10028 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
2912, 8rplogcld 24313 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
292291rpne0d 11837 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
29310rpne0d 11837 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
294290, 281, 66, 292, 293divdiv1d 10792 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / ((log‘𝑥) · 𝑥)))
295283, 294eqtr4d 2658 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥))
296295oveq2d 6631 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
29771recnd 10028 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
298297abscld 14125 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
299298, 280remulcld 10030 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
300108, 284remulcld 10030 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
301157, 300fsumrecl 14414 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
302301, 291rerpdivcld 11863 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℝ)
303299, 302resubcld 10418 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℝ)
304303recnd 10028 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℂ)
305290, 281, 292divcld 10761 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) ∈ ℂ)
306304, 305, 66, 293divdird 10799 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)) / 𝑥)))
307299recnd 10028 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℂ)
308302recnd 10028 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℂ)
309307, 308, 305subsubd 10380 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
310 2cnd 11053 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
311269, 270subcld 10352 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑇𝑛) − (𝑇‘(𝑛 − 1))) ∈ ℂ)
312109, 311mulcld 10020 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
313157, 310, 312fsummulc2 14463 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
314284recnd 10028 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℂ)
315268, 311mulcld 10020 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
316314, 315nncand 10357 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) = (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))
317316oveq2d 6631 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
318287recnd 10028 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) ∈ ℂ)
319109, 314, 318subdid 10446 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
320109, 268, 311mul12d 10205 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
321317, 319, 3203eqtr3d 2663 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
322321sumeq2dv 14383 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
323300recnd 10028 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
324288recnd 10028 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) ∈ ℂ)
325157, 323, 324fsumsub 14467 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − ((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))))
326313, 322, 3253eqtr2rd 2662 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) = (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
327326oveq1d 6630 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)))
328301recnd 10028 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℂ)
329328, 290, 281, 292divsubdird 10800 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))))
330108, 285remulcld 10030 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
331157, 330fsumrecl 14414 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℝ)
332331recnd 10028 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))) ∈ ℂ)
333310, 332, 281, 292div23d 10798 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))) / (log‘𝑥)) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
334327, 329, 3333eqtr3d 2663 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1))))))
335334oveq2d 6631 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
336309, 335eqtr3d 2657 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))))
337336oveq1d 6630 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (((𝑆𝑛) − (𝑆‘(𝑛 − 1))) − (2 · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / (log‘𝑥))) / 𝑥) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
338296, 306, 3373eqtr2d 2661 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥))
339338mpteq2dva 4714 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) = (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)))
340303, 10rerpdivcld 11863 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
341157, 158fsumrecl 14414 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
34292, 341readdcld 10029 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
34310, 291rpmulcld 11848 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
344342, 343rerpdivcld 11863 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
34547, 18pntrlog2bndlem1 25200 . . . . 5 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
346345a1i 11 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1))
347343rpcnd 11834 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
348343rpne0d 11837 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
34993, 277, 347, 348divdird 10799 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
35091recnd 10028 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) ∈ ℂ)
35143, 350, 347, 348divassd 10796 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) = ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))))
352351oveq1d 6630 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) / (𝑥 · (log‘𝑥))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
353349, 352eqtrd 2655 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
354353mpteq2dva 4714 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))))
35591, 343rerpdivcld 11863 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
35621, 355remulcld 10030 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
357341, 343rerpdivcld 11863 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
358 ioossre 12193 . . . . . . . . 9 (1(,)+∞) ⊆ ℝ
359358a1i 11 . . . . . . . 8 (⊤ → (1(,)+∞) ⊆ ℝ)
360 1red 10015 . . . . . . . 8 (⊤ → 1 ∈ ℝ)
36121, 5, 30ltled 10145 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
362361adantrr 752 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (𝑥 / ((⌊‘𝑥) + 1)) ≤ 1)
363359, 21, 360, 360, 362ello1d 14204 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (𝑥 / ((⌊‘𝑥) + 1))) ∈ ≤𝑂(1))
36480recnd 10028 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑆𝑥) ∈ ℂ)
36590recnd 10028 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ∈ ℂ)
366364, 365, 347, 348divsubdird 10800 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))))
367366mpteq2dva 4714 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))))
36880, 343rerpdivcld 11863 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℝ)
36990, 343rerpdivcld 11863 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
370 2cnd 11053 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℂ)
371 o1const 14300 . . . . . . . . . . . 12 (((1(,)+∞) ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
372358, 370, 371sylancr 694 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1))
373368recnd 10028 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / (𝑥 · (log‘𝑥))) ∈ ℂ)
37480, 10rerpdivcld 11863 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℝ)
375374recnd 10028 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑆𝑥) / 𝑥) ∈ ℂ)
376310, 281mulcld 10020 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℂ)
377375, 376, 281, 292divsubdird 10800 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))))
37823, 280remulcld 10030 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
379374, 378resubcld 10418 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
380379recnd 10028 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
381380, 281, 292divrecd 10764 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) / (log‘𝑥)) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
382364, 66, 281, 293, 292divdiv1d 10792 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / 𝑥) / (log‘𝑥)) = ((𝑆𝑥) / (𝑥 · (log‘𝑥))))
383310, 281, 292divcan4d 10767 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (log‘𝑥)) / (log‘𝑥)) = 2)
384382, 383oveq12d 6633 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑆𝑥) / 𝑥) / (log‘𝑥)) − ((2 · (log‘𝑥)) / (log‘𝑥))) = (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2))
385377, 381, 3843eqtr3rd 2664 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2) = ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥))))
386385mpteq2dva 4714 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))))
3875, 291rerpdivcld 11863 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
38810ex 450 . . . . . . . . . . . . . . . 16 (⊤ → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
389388ssrdv 3594 . . . . . . . . . . . . . . 15 (⊤ → (1(,)+∞) ⊆ ℝ+)
39047selbergs 25197 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
391390a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ℝ+ ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
392389, 391o1res2 14244 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
393 divlogrlim 24315 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
394 rlimo1 14297 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
395393, 394mp1i 13 . . . . . . . . . . . . . 14 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
396379, 387, 392, 395o1mul2 14305 . . . . . . . . . . . . 13 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑆𝑥) / 𝑥) − (2 · (log‘𝑥))) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
397386, 396eqeltrd 2698 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − 2)) ∈ 𝑂(1))
398373, 310, 397o1dif 14310 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 2) ∈ 𝑂(1)))
399372, 398mpbird 247 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑆𝑥) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
40022a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℝ)
4012, 280remulcld 10030 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
402 2rp 11797 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
403402a1i 11 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ+)
404403rpge0d 11836 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 2)
405 flge1nn 12578 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
4062, 9, 405syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℕ)
407406nnrpd 11830 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ ℝ+)
408 rpre 11799 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
409 eleq1 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 ∈ ℝ+ ↔ (⌊‘𝑥) ∈ ℝ+))
410 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → 𝑎 = (⌊‘𝑥))
411 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (⌊‘𝑥) → (log‘𝑎) = (log‘(⌊‘𝑥)))
412410, 411oveq12d 6633 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (⌊‘𝑥) → (𝑎 · (log‘𝑎)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
413409, 412ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = (⌊‘𝑥) → if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
414 ovex 6643 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ∈ V
415414, 132ifex 4134 . . . . . . . . . . . . . . . . . . . 20 if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) ∈ V
416413, 81, 415fvmpt 6249 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑥) ∈ ℝ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
417408, 416syl 17 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0))
418 iftrue 4070 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑥) ∈ ℝ+ → if((⌊‘𝑥) ∈ ℝ+, ((⌊‘𝑥) · (log‘(⌊‘𝑥))), 0) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
419417, 418eqtrd 2655 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℝ+ → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
420407, 419syl 17 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) = ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
421407relogcld 24307 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ∈ ℝ)
42213nn0ge0d 11314 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (⌊‘𝑥))
423406nnge1d 11023 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ (⌊‘𝑥))
42446, 423logge0d 24314 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘(⌊‘𝑥)))
425 flle 12556 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
4262, 425syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ≤ 𝑥)
427407, 10logled 24311 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) ≤ 𝑥 ↔ (log‘(⌊‘𝑥)) ≤ (log‘𝑥)))
428426, 427mpbid 222 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘(⌊‘𝑥)) ≤ (log‘𝑥))
42946, 2, 421, 280, 422, 424, 426, 428lemul12ad 10926 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘𝑥) · (log‘(⌊‘𝑥))) ≤ (𝑥 · (log‘𝑥)))
430420, 429eqbrtrd 4645 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑇‘(⌊‘𝑥)) ≤ (𝑥 · (log‘𝑥)))
43189, 401, 23, 404, 430lemul2ad 10924 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥))))
43290, 23, 343ledivmul2d 11886 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2 ↔ (2 · (𝑇‘(⌊‘𝑥))) ≤ (2 · (𝑥 · (log‘𝑥)))))
433431, 432mpbird 247 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
434433adantrr 752 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))) ≤ 2)
435359, 369, 360, 400, 434ello1d 14204 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
436 0red 10001 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℝ)
43746, 421, 422, 424mulge0d 10564 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((⌊‘𝑥) · (log‘(⌊‘𝑥))))
438437, 420breqtrrd 4651 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑇‘(⌊‘𝑥)))
43923, 89, 404, 438mulge0d 10564 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (2 · (𝑇‘(⌊‘𝑥))))
44090, 343, 439divge0d 11872 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))
441369, 436, 440o1lo12 14219 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1)))
442435, 441mpbird 247 . . . . . . . . . 10 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
443368, 369, 399, 442o1sub2 14306 . . . . . . . . 9 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) / (𝑥 · (log‘𝑥))) − ((2 · (𝑇‘(⌊‘𝑥))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
444367, 443eqeltrd 2698 . . . . . . . 8 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
445355, 444o1lo1d 14220 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
44621, 355, 363, 445, 41lo1mul 14308 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
44747selbergsb 25198 . . . . . . . 8 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐
448 simpl 473 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → 𝑐 ∈ ℝ+)
449 simpr 477 . . . . . . . . . 10 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐)
45047, 18, 448, 449pntrlog2bndlem3 25202 . . . . . . . . 9 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
451450rexlimiva 3023 . . . . . . . 8 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
452447, 451mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
453357, 452o1lo1d 14220 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
454356, 357, 446, 453lo1add 14307 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((𝑥 / ((⌊‘𝑥) + 1)) · (((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥)))) / (𝑥 · (log‘𝑥)))) + (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
455354, 454eqeltrd 2698 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥)))) ∈ ≤𝑂(1))
456340, 344, 346, 455lo1add 14307 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) + ((((𝑥 / ((⌊‘𝑥) + 1)) · ((𝑆𝑥) − (2 · (𝑇‘(⌊‘𝑥))))) + Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))) ∈ ≤𝑂(1))
457339, 456eqeltrrd 2699 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1))
458457trud 1490 1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1480  wtru 1481  wcel 1987  wral 2908  wrex 2909  {crab 2912  wss 3560  c0 3897  ifcif 4064   class class class wbr 4623  cmpt 4683  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  +∞cpnf 10031   < clt 10034  cle 10035  cmin 10226  -cneg 10227   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cuz 11647  +crp 11792  (,)cioo 12133  [,)cico 12135  ...cfz 12284  ..^cfzo 12422  cfl 12547  abscabs 13924  𝑟 crli 14166  𝑂(1)co1 14167  ≤𝑂(1)clo1 14168  Σcsu 14366  cdvds 14926  logclog 24239  Λcvma 24752  ψcchp 24753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-disj 4594  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-xnn0 11324  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-o1 14171  df-lo1 14172  df-sum 14367  df-ef 14742  df-e 14743  df-sin 14744  df-cos 14745  df-pi 14747  df-dvds 14927  df-gcd 15160  df-prm 15329  df-pc 15485  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-cmp 21130  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241  df-cxp 24242  df-em 24653  df-cht 24757  df-vma 24758  df-chp 24759  df-ppi 24760  df-mu 24761
This theorem is referenced by:  pntrlog2bndlem5  25204
  Copyright terms: Public domain W3C validator