Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6a Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6a 25166
 Description: Lemma for pntrlog2bndlem6 25167. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6a ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
Distinct variable groups:   𝑖,𝑎,𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6a
StepHypRef Expression
1 elioore 12144 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 11780 . . . . . . . 8 1 ∈ ℝ+
43a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
54rpred 11816 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 12172 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 475 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 10130 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 11855 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bndlem6.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
123a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
13 pntrlog2bndlem6.2 . . . . . . . 8 (𝜑 → 1 ≤ 𝐴)
1411, 12, 13rpgecld 11855 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
1514adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
1610, 15rpdivcld 11833 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
1716rprege0d 11823 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)))
18 flge0nn0 12558 . . . 4 (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0)
19 nn0p1nn 11277 . . . 4 ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
2017, 18, 193syl 18 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
21 nnuz 11667 . . 3 ℕ = (ℤ‘1)
2220, 21syl6eleq 2714 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1))
2316rpred 11816 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
2410rpge0d 11820 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
2513adantr 481 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴)
264, 15, 2, 24, 25lediv2ad 11838 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1))
272recnd 10013 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
2827div1d 10738 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
2926, 28breqtrd 4644 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥)
30 flword2 12551 . . 3 (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
3123, 2, 29, 30syl3anc 1323 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
32 fzsplit2 12305 . 2 ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1) ∧ (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
3322, 31, 32syl2anc 692 1 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∀wral 2912   ∪ cun 3558  ifcif 4063   class class class wbr 4618   ↦ cmpt 4678  ‘cfv 5850  (class class class)co 6605  ℝcr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  +∞cpnf 10016   < clt 10019   ≤ cle 10020   − cmin 10211   / cdiv 10629  ℕcn 10965  ℕ0cn0 11237  ℤ≥cuz 11631  ℝ+crp 11776  (,)cioo 12114  ...cfz 12265  ⌊cfl 12528  abscabs 13903  Σcsu 14345  logclog 24200  Λcvma 24713  ψcchp 24714 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ioo 12118  df-fz 12266  df-fl 12530 This theorem is referenced by:  pntrlog2bndlem6  25167
 Copyright terms: Public domain W3C validator