MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrmax Structured version   Visualization version   GIF version

Theorem pntrmax 24970
Description: There is a bound on the residual valid for all 𝑥. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrmax 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Distinct variable groups:   𝑥,𝑎   𝑥,𝑐,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 11675 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 1red 9911 . . 3 (⊤ → 1 ∈ ℝ)
4 pntrval.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
54pntrval 24968 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
6 rpre 11671 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7 chpcl 24567 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
86, 7syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
98, 6resubcld 10309 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) − 𝑥) ∈ ℝ)
105, 9eqeltrd 2687 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
11 rerpdivcl 11693 . . . . . 6 (((𝑅𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1210, 11mpancom 699 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1312recnd 9924 . . . 4 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℂ)
1413adantl 480 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℂ)
155oveq1d 6542 . . . . . 6 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
168recnd 9924 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
17 rpcn 11673 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
18 rpne0 11680 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1916, 17, 17, 18divsubdird 10689 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
2017, 18dividd 10648 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 𝑥) = 1)
2120oveq2d 6543 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
2215, 19, 213eqtrd 2647 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
2322mpteq2ia 4662 . . . 4 (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1))
24 rerpdivcl 11693 . . . . . . 7 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258, 24mpancom 699 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
2625adantl 480 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
27 1red 9911 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
28 chpo1ub 24886 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
2928a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
30 ax-1cn 9850 . . . . . . 7 1 ∈ ℂ
31 o1const 14144 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
321, 30, 31mp2an 703 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
3426, 27, 29, 33o1sub2 14150 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1)) ∈ 𝑂(1))
3523, 34syl5eqel 2691 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) ∈ 𝑂(1))
36 chpcl 24567 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
37 peano2re 10060 . . . . 5 ((ψ‘𝑦) ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3836, 37syl 17 . . . 4 (𝑦 ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3938ad2antrl 759 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 1) ∈ ℝ)
40223ad2ant1 1074 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
4140fveq2d 6092 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘(((ψ‘𝑥) / 𝑥) − 1)))
42 1re 9895 . . . . . . . . . 10 1 ∈ ℝ
43383ad2ant2 1075 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 1) ∈ ℝ)
44 resubcl 10196 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
4542, 43, 44sylancr 693 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
46 0red 9897 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
47253ad2ant1 1074 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
48 chpge0 24569 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
49483ad2ant2 1075 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑦))
50363ad2ant2 1075 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℝ)
51 addge02 10388 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (ψ‘𝑦) ∈ ℝ) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5242, 50, 51sylancr 693 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5349, 52mpbid 220 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ≤ ((ψ‘𝑦) + 1))
54 suble0 10391 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5542, 43, 54sylancr 693 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5653, 55mpbird 245 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ 0)
5783ad2ant1 1074 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ∈ ℝ)
5863ad2ant1 1074 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
59 chpge0 24569 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
6058, 59syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑥))
61 rpregt0 11678 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62613ad2ant1 1074 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 divge0 10741 . . . . . . . . . 10 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6457, 60, 62, 63syl21anc 1316 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6545, 46, 47, 56, 64letrd 10045 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥))
66 2re 10937 . . . . . . . . . . 11 2 ∈ ℝ
67 readdcl 9875 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((ψ‘𝑦) + 2) ∈ ℝ)
6850, 66, 67sylancl 692 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) ∈ ℝ)
69 1red 9911 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℝ)
7058adantr 479 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ∈ ℝ)
71 1red 9911 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 ∈ ℝ)
7266a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 2 ∈ ℝ)
73 simpr 475 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ≤ 1)
74 1lt2 11041 . . . . . . . . . . . . . . . 16 1 < 2
7574a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 < 2)
7670, 71, 72, 73, 75lelttrd 10046 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 < 2)
77 chpeq0 24650 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7870, 77syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7976, 78mpbird 245 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (ψ‘𝑥) = 0)
8079oveq1d 6542 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
81 simp1 1053 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ+)
8281rpcnne0d 11713 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
83 div0 10564 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (0 / 𝑥) = 0)
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) = 0)
8584, 49eqbrtrd 4599 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) ≤ (ψ‘𝑦))
8685adantr 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (0 / 𝑥) ≤ (ψ‘𝑦))
8780, 86eqbrtrd 4599 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
8847adantr 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
8957adantr 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
9050adantr 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
91 0lt1 10399 . . . . . . . . . . . . . . . 16 0 < 1
9291a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < 1)
93 lediv2a 10766 . . . . . . . . . . . . . . . 16 ((((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9493ex 448 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9569, 92, 62, 57, 60, 94syl212anc 1327 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9695imp 443 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9789recnd 9924 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℂ)
9897div1d 10642 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 1) = (ψ‘𝑥))
9996, 98breqtrd 4603 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑥))
100 simp2 1054 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
101 ltle 9977 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1026, 101sylan 486 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1031023impia 1252 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥𝑦)
104 chpwordi 24600 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10558, 100, 103, 104syl3anc 1317 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
106105adantr 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10788, 89, 90, 99, 106letrd 10045 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
10858, 69, 87, 107lecasei 9994 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
109 2nn0 11156 . . . . . . . . . . 11 2 ∈ ℕ0
110 nn0addge1 11186 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℕ0) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11150, 109, 110sylancl 692 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11247, 50, 68, 108, 111letrd 10045 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) + 2))
113 df-2 10926 . . . . . . . . . . 11 2 = (1 + 1)
114113oveq2i 6538 . . . . . . . . . 10 ((ψ‘𝑦) + 2) = ((ψ‘𝑦) + (1 + 1))
11550recnd 9924 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℂ)
11630a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℂ)
117115, 116, 116add12d 10113 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + (1 + 1)) = (1 + ((ψ‘𝑦) + 1)))
118114, 117syl5eq 2655 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) = (1 + ((ψ‘𝑦) + 1)))
119112, 118breqtrd 4603 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))
12047, 69, 43absdifled 13967 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1) ↔ ((1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥) ∧ ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))))
12165, 119, 120mpbir2and 958 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1))
12241, 121eqbrtrd 4599 . . . . . 6 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1231223expb 1257 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
124123adantrlr 754 . . . 4 ((𝑥 ∈ ℝ+ ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
125124adantll 745 . . 3 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1262, 3, 14, 35, 39, 125o1bddrp 14067 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐)
127126trud 1483 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wtru 1475  wcel 1976  wne 2779  wral 2895  wrex 2896  wss 3539   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  2c2 10917  0cn0 11139  +crp 11664  abscabs 13768  𝑂(1)co1 14011  ψcchp 24536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-o1 14015  df-lo1 14016  df-sum 14211  df-ef 14583  df-e 14584  df-sin 14585  df-cos 14586  df-pi 14588  df-dvds 14768  df-gcd 15001  df-prm 15170  df-pc 15326  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025  df-cht 24540  df-vma 24541  df-chp 24542  df-ppi 24543
This theorem is referenced by:  pntrlog2bnd  24990  pntibnd  24999  pnt3  25018
  Copyright terms: Public domain W3C validator