Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Structured version   Visualization version   GIF version

Theorem pntrsumbnd 25236
 Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑚,𝑎,𝑛   𝑚,𝑐,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssid 3616 . . . . 5 ℝ ⊆ ℝ
21a1i 11 . . . 4 (⊤ → ℝ ⊆ ℝ)
3 1red 10040 . . . 4 (⊤ → 1 ∈ ℝ)
4 fzfid 12755 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℝ) → (1...(⌊‘𝑚)) ∈ Fin)
5 elfznn 12355 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑚)) → 𝑛 ∈ ℕ)
65adantl 482 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → 𝑛 ∈ ℕ)
7 nnrp 11827 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
8 pntrval.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
98pntrf 25233 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
109ffvelrni 6344 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
117, 10syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑅𝑛) ∈ ℝ)
12 peano2nn 11017 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
13 nnmulcl 11028 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1412, 13mpdan 701 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1511, 14nndivred 11054 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
1615recnd 10053 . . . . . 6 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
176, 16syl 17 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
184, 17fsumcl 14445 . . . 4 ((⊤ ∧ 𝑚 ∈ ℝ) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
198pntrsumo1 25235 . . . . 5 (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1)
2019a1i 11 . . . 4 (⊤ → (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1))
21 fzfid 12755 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
22 elfznn 12355 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2322adantl 482 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2423, 16syl 17 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2524abscld 14156 . . . . 5 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2621, 25fsumrecl 14446 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2718adantr 481 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2827abscld 14156 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
29 fzfid 12755 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ∈ Fin)
3017adantlr 750 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3130abscld 14156 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3229, 31fsumrecl 14446 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3326ad2ant2r 782 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3429, 30fsumabs 14514 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
35 fzfid 12755 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
3622adantl 482 . . . . . . . 8 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
3736, 16syl 17 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3837abscld 14156 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3937absge0d 14164 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
40 simplr 791 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 ∈ ℝ)
41 simprll 801 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑥 ∈ ℝ)
42 simprr 795 . . . . . . . . 9 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 < 𝑥)
4340, 41, 42ltled 10170 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚𝑥)
44 flword2 12597 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑚𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
4540, 41, 43, 44syl3anc 1324 . . . . . . 7 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
46 fzss2 12366 . . . . . . 7 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4745, 46syl 17 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4835, 38, 39, 47fsumless 14509 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
4928, 32, 33, 34, 48letrd 10179 . . . 4 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
502, 3, 18, 20, 26, 49o1bddrp 14254 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
5150trud 1491 . 2 𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
52 zre 11366 . . . . . 6 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
5352imim1i 63 . . . . 5 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
54 flid 12592 . . . . . . . . 9 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
5554oveq2d 6651 . . . . . . . 8 (𝑚 ∈ ℤ → (1...(⌊‘𝑚)) = (1...𝑚))
5655sumeq1d 14412 . . . . . . 7 (𝑚 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5756fveq2d 6182 . . . . . 6 (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
5857breq1d 4654 . . . . 5 (𝑚 ∈ ℤ → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
5953, 58mpbidi 231 . . . 4 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
6059ralimi2 2946 . . 3 (∀𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6160reximi 3008 . 2 (∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∃𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6251, 61ax-mp 5 1 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481  ⊤wtru 1482   ∈ wcel 1988  ∀wral 2909  ∃wrex 2910   ⊆ wss 3567   class class class wbr 4644   ↦ cmpt 4720  ‘cfv 5876  (class class class)co 6635  ℂcc 9919  ℝcr 9920  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059   ≤ cle 10060   − cmin 10251   / cdiv 10669  ℕcn 11005  ℤcz 11362  ℤ≥cuz 11672  ℝ+crp 11817  ...cfz 12311  ⌊cfl 12574  abscabs 13955  𝑂(1)co1 14198  Σcsu 14397  ψcchp 24800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-o1 14202  df-lo1 14203  df-sum 14398  df-ef 14779  df-e 14780  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cxp 24285  df-em 24700  df-cht 24804  df-vma 24805  df-chp 24806  df-ppi 24807 This theorem is referenced by:  pntrsumbnd2  25237
 Copyright terms: Public domain W3C validator