![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > po2nr | Structured version Visualization version GIF version |
Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
po2nr | ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5075 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | |
2 | 1 | adantrr 753 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
3 | potr 5076 | . . . . . 6 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) | |
4 | 3 | 3exp2 1307 | . . . . 5 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
5 | 4 | com34 91 | . . . 4 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵))))) |
6 | 5 | pm2.43d 53 | . . 3 ⊢ (𝑅 Po 𝐴 → (𝐵 ∈ 𝐴 → (𝐶 ∈ 𝐴 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)))) |
7 | 6 | imp32 448 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵) → 𝐵𝑅𝐵)) |
8 | 2, 7 | mtod 189 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 Po wpo 5062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-po 5064 |
This theorem is referenced by: po3nr 5078 so2nr 5088 soisoi 6618 wemaplem2 8493 pospo 17020 |
Copyright terms: Public domain | W3C validator |