MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthlem Structured version   Visualization version   GIF version

Theorem pockthlem 15544
Description: Lemma for pockthg 15545. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthlem.5 (𝜑𝑃 ∈ ℙ)
pockthlem.6 (𝜑𝑃𝑁)
pockthlem.7 (𝜑𝑄 ∈ ℙ)
pockthlem.8 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
pockthlem.9 (𝜑𝐶 ∈ ℤ)
pockthlem.10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
pockthlem.11 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
Assertion
Ref Expression
pockthlem (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . . 7 (𝜑𝑄 ∈ ℙ)
2 pockthg.1 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3 pcdvds 15503 . . . . . . 7 ((𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
41, 2, 3syl2anc 692 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
52nnzd 11433 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
6 pockthg.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℕ)
76nnzd 11433 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
8 dvdsmul1 14938 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
95, 7, 8syl2anc 692 . . . . . . 7 (𝜑𝐴 ∥ (𝐴 · 𝐵))
10 pockthg.4 . . . . . . . . 9 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
1110oveq1d 6625 . . . . . . . 8 (𝜑 → (𝑁 − 1) = (((𝐴 · 𝐵) + 1) − 1))
122, 6nnmulcld 11020 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
1312nncnd 10988 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
14 ax-1cn 9946 . . . . . . . . 9 1 ∈ ℂ
15 pncan 10239 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
1613, 14, 15sylancl 693 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
1711, 16eqtrd 2655 . . . . . . 7 (𝜑 → (𝑁 − 1) = (𝐴 · 𝐵))
189, 17breqtrrd 4646 . . . . . 6 (𝜑𝐴 ∥ (𝑁 − 1))
19 prmnn 15323 . . . . . . . . . 10 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
201, 19syl 17 . . . . . . . . 9 (𝜑𝑄 ∈ ℕ)
21 pockthlem.8 . . . . . . . . . 10 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
2221nnnn0d 11303 . . . . . . . . 9 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ0)
2320, 22nnexpcld 12978 . . . . . . . 8 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℕ)
2423nnzd 11433 . . . . . . 7 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ)
25 1z 11359 . . . . . . . . . 10 1 ∈ ℤ
26 nnuz 11675 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2712, 26syl6eleq 2708 . . . . . . . . . . . 12 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
28 eluzp1p1 11665 . . . . . . . . . . . 12 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2927, 28syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
3010, 29eqeltrd 2698 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘(1 + 1)))
31 eluzp1m1 11663 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (𝑁 − 1) ∈ (ℤ‘1))
3225, 30, 31sylancr 694 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ (ℤ‘1))
3332, 26syl6eleqr 2709 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ)
3433nnzd 11433 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℤ)
35 dvdstr 14953 . . . . . . 7 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴𝐴 ∥ (𝑁 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)))
3624, 5, 34, 35syl3anc 1323 . . . . . 6 (𝜑 → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴𝐴 ∥ (𝑁 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)))
374, 18, 36mp2and 714 . . . . 5 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1))
3823nnne0d 11017 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0)
39 dvdsval2 14921 . . . . . 6 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
4024, 38, 34, 39syl3anc 1323 . . . . 5 (𝜑 → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
4137, 40mpbid 222 . . . 4 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ)
42 pockthlem.5 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
43 prmnn 15323 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4442, 43syl 17 . . . . . 6 (𝜑𝑃 ∈ ℕ)
45 pockthlem.9 . . . . . 6 (𝜑𝐶 ∈ ℤ)
4644nnzd 11433 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
47 gcddvds 15160 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
4845, 46, 47syl2anc 692 . . . . . . . . . 10 (𝜑 → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
4948simpld 475 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝐶)
5048simprd 479 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑃)
51 pockthlem.6 . . . . . . . . . 10 (𝜑𝑃𝑁)
5245, 46gcdcld 15165 . . . . . . . . . . . 12 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ0)
5352nn0zd 11432 . . . . . . . . . . 11 (𝜑 → (𝐶 gcd 𝑃) ∈ ℤ)
54 df-2 11031 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
5554fveq2i 6156 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
5630, 55syl6eleqr 2709 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘2))
57 eluz2b2 11713 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
5856, 57sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
5958simpld 475 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
6059nnzd 11433 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
61 dvdstr 14953 . . . . . . . . . . 11 (((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐶 gcd 𝑃) ∥ 𝑃𝑃𝑁) → (𝐶 gcd 𝑃) ∥ 𝑁))
6253, 46, 60, 61syl3anc 1323 . . . . . . . . . 10 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝑃𝑃𝑁) → (𝐶 gcd 𝑃) ∥ 𝑁))
6350, 51, 62mp2and 714 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑁)
6459nnne0d 11017 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
65 simpr 477 . . . . . . . . . . . 12 ((𝐶 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
6665necon3ai 2815 . . . . . . . . . . 11 (𝑁 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
6764, 66syl 17 . . . . . . . . . 10 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
68 dvdslegcd 15161 . . . . . . . . . 10 ((((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑁 = 0)) → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
6953, 45, 60, 67, 68syl31anc 1326 . . . . . . . . 9 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
7049, 63, 69mp2and 714 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁))
71 pockthlem.10 . . . . . . . . . . 11 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
7271oveq1d 6625 . . . . . . . . . 10 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = (1 gcd 𝑁))
7333nnnn0d 11303 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
74 zexpcl 12823 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐶↑(𝑁 − 1)) ∈ ℤ)
7545, 73, 74syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℤ)
76 modgcd 15188 . . . . . . . . . . 11 (((𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
7775, 59, 76syl2anc 692 . . . . . . . . . 10 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
78 gcdcom 15170 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 gcd 𝑁) = (𝑁 gcd 1))
7925, 60, 78sylancr 694 . . . . . . . . . . 11 (𝜑 → (1 gcd 𝑁) = (𝑁 gcd 1))
80 gcd1 15184 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
8160, 80syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 gcd 1) = 1)
8279, 81eqtrd 2655 . . . . . . . . . 10 (𝜑 → (1 gcd 𝑁) = 1)
8372, 77, 823eqtr3d 2663 . . . . . . . . 9 (𝜑 → ((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1)
84 rpexp 15367 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ) → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
8545, 60, 33, 84syl3anc 1323 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
8683, 85mpbid 222 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑁) = 1)
8770, 86breqtrd 4644 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ≤ 1)
8844nnne0d 11017 . . . . . . . . . 10 (𝜑𝑃 ≠ 0)
89 simpr 477 . . . . . . . . . . 11 ((𝐶 = 0 ∧ 𝑃 = 0) → 𝑃 = 0)
9089necon3ai 2815 . . . . . . . . . 10 (𝑃 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
9188, 90syl 17 . . . . . . . . 9 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
92 gcdn0cl 15159 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑃 = 0)) → (𝐶 gcd 𝑃) ∈ ℕ)
9345, 46, 91, 92syl21anc 1322 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ)
94 nnle1eq1 11000 . . . . . . . 8 ((𝐶 gcd 𝑃) ∈ ℕ → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
9593, 94syl 17 . . . . . . 7 (𝜑 → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
9687, 95mpbid 222 . . . . . 6 (𝜑 → (𝐶 gcd 𝑃) = 1)
97 odzcl 15433 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∈ ℕ)
9844, 45, 96, 97syl3anc 1323 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∈ ℕ)
9998nnzd 11433 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∈ ℤ)
10059nnred 10987 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
10158simprd 479 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
102 1mod 12650 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
103100, 101, 102syl2anc 692 . . . . . . . . 9 (𝜑 → (1 mod 𝑁) = 1)
10471, 103eqtr4d 2658 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁))
105 1zzd 11360 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
106 moddvds 14926 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
10759, 75, 105, 106syl3anc 1323 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
108104, 107mpbid 222 . . . . . . 7 (𝜑𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1))
109 peano2zm 11372 . . . . . . . . 9 ((𝐶↑(𝑁 − 1)) ∈ ℤ → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
11075, 109syl 17 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
111 dvdstr 14953 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ) → ((𝑃𝑁𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)) → 𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11246, 60, 110, 111syl3anc 1323 . . . . . . 7 (𝜑 → ((𝑃𝑁𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)) → 𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11351, 108, 112mp2and 714 . . . . . 6 (𝜑𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1))
114 odzdvds 15435 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ (𝑁 − 1) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
11544, 45, 96, 73, 114syl31anc 1326 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
116113, 115mpbid 222 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑁 − 1))
11733nncnd 10988 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℂ)
11823nncnd 10988 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℂ)
119117, 118, 38divcan1d 10754 . . . . 5 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) = (𝑁 − 1))
120116, 119breqtrrd 4646 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))))
121 nprmdvds1 15353 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
12242, 121syl 17 . . . . 5 (𝜑 → ¬ 𝑃 ∥ 1)
12320nnzd 11433 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ℤ)
124 iddvdsexp 14940 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) → 𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
125123, 21, 124syl2anc 692 . . . . . . . . . . . . 13 (𝜑𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
126 dvdstr 14953 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)) ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)) → 𝑄 ∥ (𝑁 − 1)))
127123, 24, 34, 126syl3anc 1323 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)) ∧ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1)) → 𝑄 ∥ (𝑁 − 1)))
128125, 37, 127mp2and 714 . . . . . . . . . . . 12 (𝜑𝑄 ∥ (𝑁 − 1))
12920nnne0d 11017 . . . . . . . . . . . . 13 (𝜑𝑄 ≠ 0)
130 dvdsval2 14921 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
131123, 129, 34, 130syl3anc 1323 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
132128, 131mpbid 222 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℤ)
13373nn0ge0d 11306 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 − 1))
13433nnred 10987 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
13520nnred 10987 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℝ)
13620nngt0d 11016 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑄)
137 ge0div 10842 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
138134, 135, 136, 137syl3anc 1323 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
139133, 138mpbid 222 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑁 − 1) / 𝑄))
140 elnn0z 11342 . . . . . . . . . . 11 (((𝑁 − 1) / 𝑄) ∈ ℕ0 ↔ (((𝑁 − 1) / 𝑄) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 𝑄)))
141132, 139, 140sylanbrc 697 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℕ0)
142 zexpcl 12823 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
14345, 141, 142syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
144 peano2zm 11372 . . . . . . . . 9 ((𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
145143, 144syl 17 . . . . . . . 8 (𝜑 → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
146 dvdsgcd 15196 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14746, 145, 60, 146syl3anc 1323 . . . . . . 7 (𝜑 → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14851, 147mpan2d 709 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
149 odzdvds 15435 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15044, 45, 96, 141, 149syl31anc 1326 . . . . . . 7 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15120nncnd 10988 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
15221nnzd 11433 . . . . . . . . . . 11 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℤ)
153151, 129, 152expm1d 12966 . . . . . . . . . 10 (𝜑 → (𝑄↑((𝑄 pCnt 𝐴) − 1)) = ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄))
154153oveq2d 6626 . . . . . . . . 9 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
155134, 23nndivred 11021 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℝ)
156155recnd 10020 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℂ)
157156, 118, 151, 129divassd 10788 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
158119oveq1d 6625 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = ((𝑁 − 1) / 𝑄))
159154, 157, 1583eqtr2d 2661 . . . . . . . 8 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = ((𝑁 − 1) / 𝑄))
160159breq2d 4630 . . . . . . 7 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
161150, 160bitr4d 271 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1)))))
162 pockthlem.11 . . . . . . 7 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
163162breq2d 4630 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) ↔ 𝑃 ∥ 1))
164148, 161, 1633imtr3d 282 . . . . 5 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) → 𝑃 ∥ 1))
165122, 164mtod 189 . . . 4 (𝜑 → ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))
166 prmpwdvds 15543 . . . 4 (((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ) ∧ (𝑄 ∈ ℙ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) ∧ (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) ∧ ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
16741, 99, 1, 21, 120, 165, 166syl222anc 1339 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
168 odzphi 15436 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
16944, 45, 96, 168syl3anc 1323 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
170 phiprm 15417 . . . . 5 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
17142, 170syl 17 . . . 4 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
172169, 171breqtrd 4644 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑃 − 1))
173 prmuz2 15343 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
17442, 173syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
175174, 55syl6eleq 2708 . . . . . . 7 (𝜑𝑃 ∈ (ℤ‘(1 + 1)))
176 eluzp1m1 11663 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(1 + 1))) → (𝑃 − 1) ∈ (ℤ‘1))
17725, 175, 176sylancr 694 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (ℤ‘1))
178177, 26syl6eleqr 2709 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ)
179178nnzd 11433 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℤ)
180 dvdstr 14953 . . . 4 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶) ∧ ((od𝑃)‘𝐶) ∥ (𝑃 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
18124, 99, 179, 180syl3anc 1323 . . 3 (𝜑 → (((𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶) ∧ ((od𝑃)‘𝐶) ∥ (𝑃 − 1)) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
182167, 172, 181mp2and 714 . 2 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1))
183 pcdvdsb 15508 . . 3 ((𝑄 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ0) → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
1841, 179, 22, 183syl3anc 1323 . 2 (𝜑 → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
185182, 184mpbird 247 1 (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  0cn0 11244  cz 11329  cuz 11639   mod cmo 12616  cexp 12808  cdvds 14918   gcd cgcd 15151  cprime 15320  odcodz 15403  ϕcphi 15404   pCnt cpc 15476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-xnn0 11316  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-gcd 15152  df-prm 15321  df-odz 15405  df-phi 15406  df-pc 15477
This theorem is referenced by:  pockthg  15545
  Copyright terms: Public domain W3C validator