![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pointpsubN | Structured version Visualization version GIF version |
Description: A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pointpsub.p | ⊢ 𝑃 = (Points‘𝐾) |
pointpsub.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
Ref | Expression |
---|---|
pointpsubN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2756 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pointpsub.p | . . . 4 ⊢ 𝑃 = (Points‘𝐾) | |
3 | 1, 2 | ispointN 35527 | . . 3 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 ↔ ∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞})) |
4 | pointpsub.s | . . . . . . 7 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 1, 4 | snatpsubN 35535 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ (Atoms‘𝐾)) → {𝑞} ∈ 𝑆) |
6 | 5 | ex 449 | . . . . 5 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → {𝑞} ∈ 𝑆)) |
7 | eleq1a 2830 | . . . . 5 ⊢ ({𝑞} ∈ 𝑆 → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) | |
8 | 6, 7 | syl6 35 | . . . 4 ⊢ (𝐾 ∈ AtLat → (𝑞 ∈ (Atoms‘𝐾) → (𝑋 = {𝑞} → 𝑋 ∈ 𝑆))) |
9 | 8 | rexlimdv 3164 | . . 3 ⊢ (𝐾 ∈ AtLat → (∃𝑞 ∈ (Atoms‘𝐾)𝑋 = {𝑞} → 𝑋 ∈ 𝑆)) |
10 | 3, 9 | sylbid 230 | . 2 ⊢ (𝐾 ∈ AtLat → (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝑆)) |
11 | 10 | imp 444 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∃wrex 3047 {csn 4317 ‘cfv 6045 Atomscatm 35049 AtLatcal 35050 PointscpointsN 35280 PSubSpcpsubsp 35281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-preset 17125 df-poset 17143 df-plt 17155 df-lub 17171 df-glb 17172 df-join 17173 df-meet 17174 df-p0 17236 df-lat 17243 df-covers 35052 df-ats 35053 df-atl 35084 df-pointsN 35287 df-psubsp 35288 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |