HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid Structured version   Visualization version   GIF version

Theorem polid 27986
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27911. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
polid ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))

Proof of Theorem polid
StepHypRef Expression
1 oveq1 6642 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
2 oveq1 6642 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))
32fveq2d 6182 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)))
43oveq1d 6650 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2))
5 oveq1 6642 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
65fveq2d 6182 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
76oveq1d 6650 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2))
84, 7oveq12d 6653 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)))
9 oveq1 6642 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))
109fveq2d 6182 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))))
1110oveq1d 6650 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2))
12 oveq1 6642 . . . . . . . . 9 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))
1312fveq2d 6182 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))))
1413oveq1d 6650 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))
1511, 14oveq12d 6653 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))
1615oveq2d 6651 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))))
178, 16oveq12d 6653 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))))
1817oveq1d 6650 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4))
191, 18eqeq12d 2635 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4)))
20 oveq2 6643 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
21 oveq2 6643 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))
2221fveq2d 6182 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0))))
2322oveq1d 6650 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
24 oveq2 6643 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
2524fveq2d 6182 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
2625oveq1d 6650 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2))
2723, 26oveq12d 6653 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)))
28 oveq2 6643 . . . . . . . . . 10 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · 𝐵) = (i · if(𝐵 ∈ ℋ, 𝐵, 0)))
2928oveq2d 6651 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3029fveq2d 6182 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3130oveq1d 6650 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3228oveq2d 6651 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))
3332fveq2d 6182 . . . . . . . 8 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵))) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0)))))
3433oveq1d 6650 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2) = ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))
3531, 34oveq12d 6653 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)) = (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))
3635oveq2d 6651 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2))) = (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2))))
3727, 36oveq12d 6653 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) = ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))))
3837oveq1d 6650 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4))
3920, 38eqeq12d 2635 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + 𝐵))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · 𝐵)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · 𝐵)))↑2)))) / 4) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)))
40 ifhvhv0 27849 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
41 ifhvhv0 27849 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
4240, 41polidi 27985 . 2 (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = (((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + if(𝐵 ∈ ℋ, 𝐵, 0)))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))↑2)) + (i · (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) + (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2) − ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − (i · if(𝐵 ∈ ℋ, 𝐵, 0))))↑2)))) / 4)
4319, 39, 42dedth2h 4131 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (((((norm‘(𝐴 + 𝐵))↑2) − ((norm‘(𝐴 𝐵))↑2)) + (i · (((norm‘(𝐴 + (i · 𝐵)))↑2) − ((norm‘(𝐴 (i · 𝐵)))↑2)))) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  ifcif 4077  cfv 5876  (class class class)co 6635  ici 9923   + caddc 9924   · cmul 9926  cmin 10251   / cdiv 10669  2c2 11055  4c4 11057  cexp 12843  chil 27746   + cva 27747   · csm 27748   ·ih csp 27749  normcno 27750  0c0v 27751   cmv 27752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-hfvadd 27827  ax-hv0cl 27830  ax-hfvmul 27832  ax-hvmul0 27837  ax-hfi 27906  ax-his1 27909  ax-his2 27910  ax-his3 27911  ax-his4 27912
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-hnorm 27795  df-hvsub 27798
This theorem is referenced by:  hhip  28004
  Copyright terms: Public domain W3C validator