HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  polid2i Structured version   Visualization version   GIF version

Theorem polid2i 28142
Description: Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
polid2.1 𝐴 ∈ ℋ
polid2.2 𝐵 ∈ ℋ
polid2.3 𝐶 ∈ ℋ
polid2.4 𝐷 ∈ ℋ
Assertion
Ref Expression
polid2i (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)

Proof of Theorem polid2i
StepHypRef Expression
1 4cn 11136 . 2 4 ∈ ℂ
2 polid2.1 . . 3 𝐴 ∈ ℋ
3 polid2.2 . . 3 𝐵 ∈ ℋ
42, 3hicli 28066 . 2 (𝐴 ·ih 𝐵) ∈ ℂ
5 4ne0 11155 . 2 4 ≠ 0
6 2cn 11129 . . . 4 2 ∈ ℂ
7 polid2.3 . . . . . 6 𝐶 ∈ ℋ
8 polid2.4 . . . . . 6 𝐷 ∈ ℋ
97, 8hicli 28066 . . . . 5 (𝐶 ·ih 𝐷) ∈ ℂ
104, 9addcli 10082 . . . 4 ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) ∈ ℂ
114, 9subcli 10395 . . . 4 ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)) ∈ ℂ
126, 10, 11adddii 10088 . . 3 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
13 ppncan 10361 . . . . . . 7 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐶 ·ih 𝐷) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ∈ ℂ) → (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵)))
144, 9, 4, 13mp3an 1464 . . . . . 6 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1542timesi 11185 . . . . . 6 (2 · (𝐴 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐵))
1614, 15eqtr4i 2676 . . . . 5 (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))) = (2 · (𝐴 ·ih 𝐵))
1716oveq2i 6701 . . . 4 (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))) = (2 · (2 · (𝐴 ·ih 𝐵)))
186, 6, 4mulassi 10087 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (2 · (2 · (𝐴 ·ih 𝐵)))
19 2t2e4 11215 . . . . 5 (2 · 2) = 4
2019oveq1i 6700 . . . 4 ((2 · 2) · (𝐴 ·ih 𝐵)) = (4 · (𝐴 ·ih 𝐵))
2117, 18, 203eqtr2ri 2680 . . 3 (4 · (𝐴 ·ih 𝐵)) = (2 · (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
222, 8hicli 28066 . . . . . . 7 (𝐴 ·ih 𝐷) ∈ ℂ
237, 3hicli 28066 . . . . . . 7 (𝐶 ·ih 𝐵) ∈ ℂ
2422, 23addcli 10082 . . . . . 6 ((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) ∈ ℂ
2524, 10, 10pnncani 10414 . . . . 5 ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
262, 7, 8, 3normlem8 28102 . . . . . 6 ((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
272, 7, 8, 3normlem9 28103 . . . . . 6 ((𝐴 𝐶) ·ih (𝐷 𝐵)) = (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
2826, 27oveq12i 6702 . . . . 5 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = ((((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + (𝐶 ·ih 𝐵)) − ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))))
29102timesi 11185 . . . . 5 (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) = (((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)) + ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
3025, 28, 293eqtr4i 2683 . . . 4 (((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) = (2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷)))
31 ax-icn 10033 . . . . . . . . . 10 i ∈ ℂ
3231, 7hvmulcli 27999 . . . . . . . . 9 (i · 𝐶) ∈ ℋ
3331, 3hvmulcli 27999 . . . . . . . . 9 (i · 𝐵) ∈ ℋ
342, 32, 8, 33normlem8 28102 . . . . . . . 8 ((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
352, 32, 8, 33normlem9 28103 . . . . . . . 8 ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))) = (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
3634, 35oveq12i 6702 . . . . . . 7 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))))
3732, 33hicli 28066 . . . . . . . . 9 ((i · 𝐶) ·ih (i · 𝐵)) ∈ ℂ
3822, 37addcli 10082 . . . . . . . 8 ((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) ∈ ℂ
392, 33hicli 28066 . . . . . . . . 9 (𝐴 ·ih (i · 𝐵)) ∈ ℂ
4032, 8hicli 28066 . . . . . . . . 9 ((i · 𝐶) ·ih 𝐷) ∈ ℂ
4139, 40addcli 10082 . . . . . . . 8 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) ∈ ℂ
4238, 41, 41pnncani 10414 . . . . . . 7 ((((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) − (((𝐴 ·ih 𝐷) + ((i · 𝐶) ·ih (i · 𝐵))) − ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
43412timesi 11185 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)))
44 his5 28071 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵)))
4531, 2, 3, 44mp3an 1464 . . . . . . . . . . 11 (𝐴 ·ih (i · 𝐵)) = ((∗‘i) · (𝐴 ·ih 𝐵))
46 cji 13943 . . . . . . . . . . . 12 (∗‘i) = -i
4746oveq1i 6700 . . . . . . . . . . 11 ((∗‘i) · (𝐴 ·ih 𝐵)) = (-i · (𝐴 ·ih 𝐵))
4845, 47eqtri 2673 . . . . . . . . . 10 (𝐴 ·ih (i · 𝐵)) = (-i · (𝐴 ·ih 𝐵))
49 ax-his3 28069 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷)))
5031, 7, 8, 49mp3an 1464 . . . . . . . . . 10 ((i · 𝐶) ·ih 𝐷) = (i · (𝐶 ·ih 𝐷))
5148, 50oveq12i 6702 . . . . . . . . 9 ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) = ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))
5251oveq2i 6701 . . . . . . . 8 (2 · ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5343, 52eqtr3i 2675 . . . . . . 7 (((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷)) + ((𝐴 ·ih (i · 𝐵)) + ((i · 𝐶) ·ih 𝐷))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5436, 42, 533eqtri 2677 . . . . . 6 (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))) = (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))
5554oveq2i 6701 . . . . 5 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
56 negicn 10320 . . . . . . . 8 -i ∈ ℂ
5756, 4mulcli 10083 . . . . . . 7 (-i · (𝐴 ·ih 𝐵)) ∈ ℂ
5831, 9mulcli 10083 . . . . . . 7 (i · (𝐶 ·ih 𝐷)) ∈ ℂ
5957, 58addcli 10082 . . . . . 6 ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))) ∈ ℂ
606, 31, 59mul12i 10269 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (i · (2 · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))))
6131, 57, 58adddii 10088 . . . . . . 7 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷))))
6231, 31mulneg2i 10515 . . . . . . . . . . 11 (i · -i) = -(i · i)
63 ixi 10694 . . . . . . . . . . . 12 (i · i) = -1
6463negeqi 10312 . . . . . . . . . . 11 -(i · i) = --1
65 negneg1e1 11166 . . . . . . . . . . 11 --1 = 1
6662, 64, 653eqtri 2677 . . . . . . . . . 10 (i · -i) = 1
6766oveq1i 6700 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (1 · (𝐴 ·ih 𝐵))
6831, 56, 4mulassi 10087 . . . . . . . . 9 ((i · -i) · (𝐴 ·ih 𝐵)) = (i · (-i · (𝐴 ·ih 𝐵)))
694mulid2i 10081 . . . . . . . . 9 (1 · (𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵)
7067, 68, 693eqtr3i 2681 . . . . . . . 8 (i · (-i · (𝐴 ·ih 𝐵))) = (𝐴 ·ih 𝐵)
7163oveq1i 6700 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (-1 · (𝐶 ·ih 𝐷))
7231, 31, 9mulassi 10087 . . . . . . . . 9 ((i · i) · (𝐶 ·ih 𝐷)) = (i · (i · (𝐶 ·ih 𝐷)))
739mulm1i 10513 . . . . . . . . 9 (-1 · (𝐶 ·ih 𝐷)) = -(𝐶 ·ih 𝐷)
7471, 72, 733eqtr3i 2681 . . . . . . . 8 (i · (i · (𝐶 ·ih 𝐷))) = -(𝐶 ·ih 𝐷)
7570, 74oveq12i 6702 . . . . . . 7 ((i · (-i · (𝐴 ·ih 𝐵))) + (i · (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷))
764, 9negsubi 10397 . . . . . . 7 ((𝐴 ·ih 𝐵) + -(𝐶 ·ih 𝐷)) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7761, 75, 763eqtri 2677 . . . . . 6 (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷)))) = ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))
7877oveq2i 6701 . . . . 5 (2 · (i · ((-i · (𝐴 ·ih 𝐵)) + (i · (𝐶 ·ih 𝐷))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
7955, 60, 783eqtr2i 2679 . . . 4 (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))) = (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷)))
8030, 79oveq12i 6702 . . 3 ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) = ((2 · ((𝐴 ·ih 𝐵) + (𝐶 ·ih 𝐷))) + (2 · ((𝐴 ·ih 𝐵) − (𝐶 ·ih 𝐷))))
8112, 21, 803eqtr4i 2683 . 2 (4 · (𝐴 ·ih 𝐵)) = ((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵))))))
821, 4, 5, 81mvllmuli 10896 1 (𝐴 ·ih 𝐵) = (((((𝐴 + 𝐶) ·ih (𝐷 + 𝐵)) − ((𝐴 𝐶) ·ih (𝐷 𝐵))) + (i · (((𝐴 + (i · 𝐶)) ·ih (𝐷 + (i · 𝐵))) − ((𝐴 (i · 𝐶)) ·ih (𝐷 (i · 𝐵)))))) / 4)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972  1c1 9975  ici 9976   + caddc 9977   · cmul 9979  cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  4c4 11110  ccj 13880  chil 27904   + cva 27905   · csm 27906   ·ih csp 27907   cmv 27910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hfvadd 27985  ax-hfvmul 27990  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-3 11118  df-4 11119  df-cj 13883  df-re 13884  df-im 13885  df-hvsub 27956
This theorem is referenced by:  polidi  28143  lnopeq0lem1  28992  lnophmlem2  29004
  Copyright terms: Public domain W3C validator