MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Structured version   Visualization version   GIF version

Theorem poltletr 5434
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 5433 . . . . 5 (𝐶𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
213ad2ant3 1076 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
32adantl 480 . . 3 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
43anbi2d 735 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶))))
5 potr 4961 . . . . 5 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
65com12 32 . . . 4 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
7 breq2 4581 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
87biimpac 501 . . . . 5 ((𝐴𝑅𝐵𝐵 = 𝐶) → 𝐴𝑅𝐶)
98a1d 25 . . . 4 ((𝐴𝑅𝐵𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
106, 9jaodan 821 . . 3 ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
1110com12 32 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → 𝐴𝑅𝐶))
124, 11sylbid 228 1 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  cun 3537   class class class wbr 4577   I cid 4938   Po wpo 4947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-id 4943  df-po 4949  df-xp 5034  df-rel 5035
This theorem is referenced by:  soltmin  5438
  Copyright terms: Public domain W3C validator