Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   GIF version

Theorem polval2N 34010
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u 𝑈 = (lub‘𝐾)
polval2.o = (oc‘𝐾)
polval2.a 𝐴 = (Atoms‘𝐾)
polval2.m 𝑀 = (pmap‘𝐾)
polval2.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polval2N ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))

Proof of Theorem polval2N
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3 = (oc‘𝐾)
2 polval2.a . . 3 𝐴 = (Atoms‘𝐾)
3 polval2.m . . 3 𝑀 = (pmap‘𝐾)
4 polval2.p . . 3 𝑃 = (⊥𝑃𝐾)
51, 2, 3, 4polvalN 34009 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
6 hlop 33467 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
76ad2antrr 757 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝐾 ∈ OP)
8 ssel2 3559 . . . . . . 7 ((𝑋𝐴𝑝𝑋) → 𝑝𝐴)
98adantll 745 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝𝐴)
10 eqid 2606 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 33394 . . . . . 6 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
129, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → 𝑝 ∈ (Base‘𝐾))
1310, 1opoccl 33299 . . . . 5 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( 𝑝) ∈ (Base‘𝐾))
147, 12, 13syl2anc 690 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( 𝑝) ∈ (Base‘𝐾))
1514ralrimiva 2945 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾))
16 eqid 2606 . . . 4 (glb‘𝐾) = (glb‘𝐾)
1710, 16, 2, 3pmapglb2xN 33876 . . 3 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
1815, 17syldan 485 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
19 polval2.u . . . . . 6 𝑈 = (lub‘𝐾)
2010, 19, 16, 1glbconxN 33482 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑝𝑋 ( 𝑝) ∈ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2115, 20syldan 485 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})))
2210, 1opococ 33300 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑝 ∈ (Base‘𝐾)) → ( ‘( 𝑝)) = 𝑝)
237, 12, 22syl2anc 690 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → ( ‘( 𝑝)) = 𝑝)
2423eqeq2d 2616 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ 𝑝𝑋) → (𝑥 = ( ‘( 𝑝)) ↔ 𝑥 = 𝑝))
2524rexbidva 3027 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (∃𝑝𝑋 𝑥 = ( ‘( 𝑝)) ↔ ∃𝑝𝑋 𝑥 = 𝑝))
2625abbidv 2724 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝})
27 df-rex 2898 . . . . . . . . . 10 (∃𝑝𝑋 𝑥 = 𝑝 ↔ ∃𝑝(𝑝𝑋𝑥 = 𝑝))
28 equcom 1931 . . . . . . . . . . . . 13 (𝑥 = 𝑝𝑝 = 𝑥)
2928anbi2i 725 . . . . . . . . . . . 12 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝𝑋𝑝 = 𝑥))
30 ancom 464 . . . . . . . . . . . 12 ((𝑝𝑋𝑝 = 𝑥) ↔ (𝑝 = 𝑥𝑝𝑋))
3129, 30bitri 262 . . . . . . . . . . 11 ((𝑝𝑋𝑥 = 𝑝) ↔ (𝑝 = 𝑥𝑝𝑋))
3231exbii 1763 . . . . . . . . . 10 (∃𝑝(𝑝𝑋𝑥 = 𝑝) ↔ ∃𝑝(𝑝 = 𝑥𝑝𝑋))
33 vex 3172 . . . . . . . . . . 11 𝑥 ∈ V
34 eleq1 2672 . . . . . . . . . . 11 (𝑝 = 𝑥 → (𝑝𝑋𝑥𝑋))
3533, 34ceqsexv 3211 . . . . . . . . . 10 (∃𝑝(𝑝 = 𝑥𝑝𝑋) ↔ 𝑥𝑋)
3627, 32, 353bitri 284 . . . . . . . . 9 (∃𝑝𝑋 𝑥 = 𝑝𝑥𝑋)
3736abbii 2722 . . . . . . . 8 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = {𝑥𝑥𝑋}
38 abid2 2728 . . . . . . . 8 {𝑥𝑥𝑋} = 𝑋
3937, 38eqtri 2628 . . . . . . 7 {𝑥 ∣ ∃𝑝𝑋 𝑥 = 𝑝} = 𝑋
4026, 39syl6eq 2656 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → {𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))} = 𝑋)
4140fveq2d 6089 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))}) = (𝑈𝑋))
4241fveq2d 6089 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑈‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( ‘( 𝑝))})) = ( ‘(𝑈𝑋)))
4321, 42eqtrd 2640 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)}) = ( ‘(𝑈𝑋)))
4443fveq2d 6089 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((glb‘𝐾)‘{𝑥 ∣ ∃𝑝𝑋 𝑥 = ( 𝑝)})) = (𝑀‘( ‘(𝑈𝑋))))
455, 18, 443eqtr2d 2646 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  {cab 2592  wral 2892  wrex 2893  cin 3535  wss 3536   ciin 4447  cfv 5787  Basecbs 15638  occoc 15719  lubclub 16708  glbcglb 16709  OPcops 33277  Atomscatm 33368  HLchlt 33455  pmapcpmap 33601  𝑃cpolN 34006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-riotaBAD 33057
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-undef 7260  df-preset 16694  df-poset 16712  df-lub 16740  df-glb 16741  df-join 16742  df-meet 16743  df-p1 16806  df-lat 16812  df-clat 16874  df-oposet 33281  df-ol 33283  df-oml 33284  df-ats 33372  df-hlat 33456  df-pmap 33608  df-polarityN 34007
This theorem is referenced by:  polsubN  34011  pol1N  34014  polpmapN  34016  2polvalN  34018  3polN  34020  poldmj1N  34032  pnonsingN  34037  ispsubcl2N  34051  polsubclN  34056  poml4N  34057
  Copyright terms: Public domain W3C validator