Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polvalN Structured version   Visualization version   GIF version

Theorem polvalN 35509
Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o = (oc‘𝐾)
polfval.a 𝐴 = (Atoms‘𝐾)
polfval.m 𝑀 = (pmap‘𝐾)
polfval.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polvalN ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Distinct variable groups:   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐵(𝑝)   𝑃(𝑝)   𝑀(𝑝)   (𝑝)

Proof of Theorem polvalN
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 polfval.a . . . 4 𝐴 = (Atoms‘𝐾)
2 fvex 6239 . . . 4 (Atoms‘𝐾) ∈ V
31, 2eqeltri 2726 . . 3 𝐴 ∈ V
43elpw2 4858 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
5 polfval.o . . . . 5 = (oc‘𝐾)
6 polfval.m . . . . 5 𝑀 = (pmap‘𝐾)
7 polfval.p . . . . 5 𝑃 = (⊥𝑃𝐾)
85, 1, 6, 7polfvalN 35508 . . . 4 (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
98fveq1d 6231 . . 3 (𝐾𝐵 → (𝑃𝑋) = ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋))
10 iineq1 4567 . . . . 5 (𝑚 = 𝑋 𝑝𝑚 (𝑀‘( 𝑝)) = 𝑝𝑋 (𝑀‘( 𝑝)))
1110ineq2d 3847 . . . 4 (𝑚 = 𝑋 → (𝐴 𝑝𝑚 (𝑀‘( 𝑝))) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
12 eqid 2651 . . . 4 (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))) = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))
133inex1 4832 . . . 4 (𝐴 𝑝𝑋 (𝑀‘( 𝑝))) ∈ V
1411, 12, 13fvmpt 6321 . . 3 (𝑋 ∈ 𝒫 𝐴 → ((𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝))))‘𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
159, 14sylan9eq 2705 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
164, 15sylan2br 492 1 ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607  𝒫 cpw 4191   ciin 4553  cmpt 4762  cfv 5926  occoc 15996  Atomscatm 34868  pmapcpmap 35101  𝑃cpolN 35506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-polarityN 35507
This theorem is referenced by:  polval2N  35510  pol0N  35513  polcon3N  35521  polatN  35535
  Copyright terms: Public domain W3C validator