![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > porpss | Structured version Visualization version GIF version |
Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
porpss | ⊢ [⊊] Po 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssirr 3782 | . . . . 5 ⊢ ¬ 𝑥 ⊊ 𝑥 | |
2 | psstr 3786 | . . . . 5 ⊢ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧) | |
3 | vex 3275 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | 3 | brrpss 7025 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑥 ↔ 𝑥 ⊊ 𝑥) |
5 | 4 | notbii 309 | . . . . . 6 ⊢ (¬ 𝑥 [⊊] 𝑥 ↔ ¬ 𝑥 ⊊ 𝑥) |
6 | vex 3275 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 6 | brrpss 7025 | . . . . . . . 8 ⊢ (𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦) |
8 | vex 3275 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
9 | 8 | brrpss 7025 | . . . . . . . 8 ⊢ (𝑦 [⊊] 𝑧 ↔ 𝑦 ⊊ 𝑧) |
10 | 7, 9 | anbi12i 735 | . . . . . . 7 ⊢ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) ↔ (𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧)) |
11 | 8 | brrpss 7025 | . . . . . . 7 ⊢ (𝑥 [⊊] 𝑧 ↔ 𝑥 ⊊ 𝑧) |
12 | 10, 11 | imbi12i 339 | . . . . . 6 ⊢ (((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧) ↔ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧)) |
13 | 5, 12 | anbi12i 735 | . . . . 5 ⊢ ((¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) ↔ (¬ 𝑥 ⊊ 𝑥 ∧ ((𝑥 ⊊ 𝑦 ∧ 𝑦 ⊊ 𝑧) → 𝑥 ⊊ 𝑧))) |
14 | 1, 2, 13 | mpbir2an 993 | . . . 4 ⊢ (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
15 | 14 | rgenw 2994 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
16 | 15 | rgen2w 2995 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧)) |
17 | df-po 5107 | . 2 ⊢ ( [⊊] Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥 [⊊] 𝑥 ∧ ((𝑥 [⊊] 𝑦 ∧ 𝑦 [⊊] 𝑧) → 𝑥 [⊊] 𝑧))) | |
18 | 16, 17 | mpbir 221 | 1 ⊢ [⊊] Po 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wral 2982 ⊊ wpss 3649 class class class wbr 4728 Po wpo 5105 [⊊] crpss 7021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-sep 4857 ax-nul 4865 ax-pr 4979 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-ral 2987 df-rex 2988 df-rab 2991 df-v 3274 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-pss 3664 df-nul 3992 df-if 4163 df-sn 4254 df-pr 4256 df-op 4260 df-br 4729 df-opab 4789 df-po 5107 df-xp 5192 df-rel 5193 df-rpss 7022 |
This theorem is referenced by: sorpss 7027 fin23lem40 9254 isfin1-3 9289 zorng 9407 fin2so 33596 |
Copyright terms: Public domain | W3C validator |