Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Visualization version   GIF version

Theorem pospo 17174
 Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b 𝐵 = (Base‘𝐾)
pospo.l = (le‘𝐾)
pospo.s < = (lt‘𝐾)
Assertion
Ref Expression
pospo (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem pospo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5 < = (lt‘𝐾)
21pltirr 17164 . . . 4 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → ¬ 𝑥 < 𝑥)
3 pospo.b . . . . 5 𝐵 = (Base‘𝐾)
43, 1plttr 17171 . . . 4 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 5195 . . 3 (𝐾 ∈ Poset → < Po 𝐵)
6 relres 5584 . . . . 5 Rel ( I ↾ 𝐵)
76a1i 11 . . . 4 (𝐾 ∈ Poset → Rel ( I ↾ 𝐵))
8 opabresid 5613 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
98eleq2i 2831 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵))
10 opabid 5132 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ (𝑥𝐵𝑦 = 𝑥))
119, 10bitr3i 266 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) ↔ (𝑥𝐵𝑦 = 𝑥))
12 pospo.l . . . . . . . 8 = (le‘𝐾)
133, 12posref 17152 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → 𝑥 𝑥)
14 df-br 4805 . . . . . . . 8 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
15 breq2 4808 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥 𝑦𝑥 𝑥))
1614, 15syl5bbr 274 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ 𝑥 𝑥))
1713, 16syl5ibrcom 237 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ ∈ ))
1817expimpd 630 . . . . 5 (𝐾 ∈ Poset → ((𝑥𝐵𝑦 = 𝑥) → ⟨𝑥, 𝑦⟩ ∈ ))
1911, 18syl5bi 232 . . . 4 (𝐾 ∈ Poset → (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ ))
207, 19relssdv 5369 . . 3 (𝐾 ∈ Poset → ( I ↾ 𝐵) ⊆ )
215, 20jca 555 . 2 (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
22 elex 3352 . . . . 5 (𝐾𝑉𝐾 ∈ V)
2322adantr 472 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ V)
243a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐵 = (Base‘𝐾))
2512a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → = (le‘𝐾))
26 equid 2094 . . . . . 6 𝑥 = 𝑥
27 simpr 479 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥𝐵)
28 resieq 5565 . . . . . . 7 ((𝑥𝐵𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
2927, 27, 28syl2anc 696 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
3026, 29mpbiri 248 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥( I ↾ 𝐵)𝑥)
31 simplrr 820 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → ( I ↾ 𝐵) ⊆ )
3231ssbrd 4847 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 𝑥))
3330, 32mpd 15 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥 𝑥)
343, 12, 1pleval2i 17165 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
35343adant1 1125 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
363, 12, 1pleval2i 17165 . . . . . . 7 ((𝑦𝐵𝑥𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
3736ancoms 468 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
38373adant1 1125 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
39 simprl 811 . . . . . . . 8 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → < Po 𝐵)
40 po2nr 5200 . . . . . . . . 9 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵)) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
41403impb 1108 . . . . . . . 8 (( < Po 𝐵𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4239, 41syl3an1 1167 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4342pm2.21d 118 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
44 simpl 474 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦)
4544a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
46 simpr 479 . . . . . . . 8 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eqcomd 2766 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
4847a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
49 simpl 474 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
5049a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
5143, 45, 48, 50ccased 1025 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑥𝑦 = 𝑥)) → 𝑥 = 𝑦))
5235, 38, 51syl2and 501 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
53 simpr1 1234 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
54 simpr2 1236 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
5553, 54, 34syl2anc 696 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
56 simpr3 1238 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
573, 12, 1pleval2i 17165 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
5854, 56, 57syl2anc 696 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
59 potr 5199 . . . . . . . 8 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
6039, 59sylan 489 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
61 simpll 807 . . . . . . . 8 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾𝑉)
6212, 1pltle 17162 . . . . . . . 8 ((𝐾𝑉𝑥𝐵𝑧𝐵) → (𝑥 < 𝑧𝑥 𝑧))
6361, 53, 56, 62syl3anc 1477 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 < 𝑧𝑥 𝑧))
6460, 63syld 47 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
65 breq1 4807 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
6665biimpar 503 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧)
6766, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
68 breq2 4808 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
6968biimpac 504 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 < 𝑧)
7069, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7153, 33syldan 488 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 𝑥)
72 eqtr 2779 . . . . . . . 8 ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 = 𝑧)
7372breq2d 4816 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑧) → (𝑥 𝑥𝑥 𝑧))
7471, 73syl5ibcom 235 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7564, 67, 70, 74ccased 1025 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑧𝑦 = 𝑧)) → 𝑥 𝑧))
7655, 58, 75syl2and 501 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
7723, 24, 25, 33, 52, 76isposd 17156 . . 3 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ Poset)
7877ex 449 . 2 (𝐾𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) → 𝐾 ∈ Poset))
7921, 78impbid2 216 1 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ⊆ wss 3715  ⟨cop 4327   class class class wbr 4804  {copab 4864   I cid 5173   Po wpo 5185   ↾ cres 5268  Rel wrel 5271  ‘cfv 6049  Basecbs 16059  lecple 16150  Posetcpo 17141  ltcplt 17142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-res 5278  df-iota 6012  df-fun 6051  df-fv 6057  df-preset 17129  df-poset 17147  df-plt 17159 This theorem is referenced by:  tosso  17237
 Copyright terms: Public domain W3C validator