![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version |
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpw0 4489 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
2 | p0ex 5002 | . . 3 ⊢ {∅} ∈ V | |
3 | 2 | pwex 4997 | . 2 ⊢ 𝒫 {∅} ∈ V |
4 | 1, 3 | eqeltrri 2836 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 Vcvv 3340 ∅c0 4058 𝒫 cpw 4302 {csn 4321 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 |
This theorem is referenced by: ord3ex 5005 zfpair 5053 |
Copyright terms: Public domain | W3C validator |