MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   GIF version

Theorem ppidif 25009
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 11810 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzel2 11805 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 2z 11522 . . . . . . 7 2 ∈ ℤ
4 ifcl 4238 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
52, 3, 4sylancl 697 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
63a1i 11 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
72zred 11595 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
8 2re 11203 . . . . . . 7 2 ∈ ℝ
9 min2 12135 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
107, 8, 9sylancl 697 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
11 eluz2 11806 . . . . . 6 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
125, 6, 10, 11syl3anbrc 1383 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
13 ppival2g 24975 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
141, 12, 13syl2anc 696 . . . 4 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
15 min1 12134 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
167, 8, 15sylancl 697 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
17 eluz2 11806 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
185, 2, 16, 17syl3anbrc 1383 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
19 id 22 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
20 elfzuzb 12450 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
2118, 19, 20sylanbrc 701 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
22 fzsplit 12481 . . . . . . . 8 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2321, 22syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2423ineq1d 3921 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
25 indir 3983 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
2624, 25syl6eq 2774 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
2726fveq2d 6308 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) = (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))))
287ltp1d 11067 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
29 fzdisj 12482 . . . . . . . 8 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3028, 29syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3130ineq1d 3921 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
32 inindir 3939 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
33 0in 4077 . . . . . 6 (∅ ∩ ℙ) = ∅
3431, 32, 333eqtr3g 2781 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
35 fzfi 12886 . . . . . . 7 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
36 inss1 3941 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
37 ssfi 8296 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
3835, 36, 37mp2an 710 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
39 fzfi 12886 . . . . . . 7 ((𝑀 + 1)...𝑁) ∈ Fin
40 inss1 3941 . . . . . . 7 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
41 ssfi 8296 . . . . . . 7 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
4239, 40, 41mp2an 710 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
43 hashun 13284 . . . . . 6 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin ∧ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4438, 42, 43mp3an12 1527 . . . . 5 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅ → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4534, 44syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4614, 27, 453eqtrd 2762 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
47 ppival2g 24975 . . . 4 ((𝑀 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
482, 12, 47syl2anc 696 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
4946, 48oveq12d 6783 . 2 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))))
50 hashcl 13260 . . . . 5 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0)
5138, 50ax-mp 5 . . . 4 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0
5251nn0cni 11417 . . 3 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ
53 hashcl 13260 . . . . 5 ((((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin → (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0)
5442, 53ax-mp 5 . . . 4 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0
5554nn0cni 11417 . . 3 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ
56 pncan2 10401 . . 3 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ ∧ (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ) → (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
5752, 55, 56mp2an 710 . 2 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))
5849, 57syl6eq 2774 1 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wcel 2103  cun 3678  cin 3679  wss 3680  c0 4023  ifcif 4194   class class class wbr 4760  cfv 6001  (class class class)co 6765  Fincfn 8072  cc 10047  cr 10048  1c1 10050   + caddc 10052   < clt 10187  cle 10188  cmin 10379  2c2 11183  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  chash 13232  cprime 15508  πcppi 24940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-icc 12296  df-fz 12441  df-fl 12708  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-dvds 15104  df-prm 15509  df-ppi 24946
This theorem is referenced by:  ppiub  25049  chtppilimlem1  25282
  Copyright terms: Public domain W3C validator