MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Visualization version   GIF version

Theorem ppiltx 24620
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 11671 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 ppicl 24574 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℕ0)
43nn0red 11199 . . . 4 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℝ)
54adantr 479 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) ∈ ℝ)
6 reflcl 12414 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
71, 6syl 17 . . . 4 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
87adantr 479 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
91adantr 479 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ)
10 fzfi 12588 . . . . . 6 (1...(⌊‘𝐴)) ∈ Fin
11 inss1 3794 . . . . . . 7 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
12 2eluzge1 11566 . . . . . . . . 9 2 ∈ (ℤ‘1)
13 fzss1 12206 . . . . . . . . 9 (2 ∈ (ℤ‘1) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
1412, 13mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
15 simpr 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℕ)
16 nnuz 11555 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1715, 16syl6eleq 2697 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ (ℤ‘1))
18 eluzfz1 12174 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
1917, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 1 ∈ (1...(⌊‘𝐴)))
20 1lt2 11041 . . . . . . . . . . . 12 1 < 2
21 1re 9895 . . . . . . . . . . . . 13 1 ∈ ℝ
22 2re 10937 . . . . . . . . . . . . 13 2 ∈ ℝ
2321, 22ltnlei 10009 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 218 . . . . . . . . . . 11 ¬ 2 ≤ 1
25 elfzle1 12170 . . . . . . . . . . 11 (1 ∈ (2...(⌊‘𝐴)) → 2 ≤ 1)
2624, 25mto 186 . . . . . . . . . 10 ¬ 1 ∈ (2...(⌊‘𝐴))
27 nelne1 2877 . . . . . . . . . 10 ((1 ∈ (1...(⌊‘𝐴)) ∧ ¬ 1 ∈ (2...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2819, 26, 27sylancl 692 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2928necomd 2836 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴)))
30 df-pss 3555 . . . . . . . 8 ((2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)) ↔ ((2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴))))
3114, 29, 30sylanbrc 694 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)))
32 sspsstr 3673 . . . . . . 7 ((((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
3311, 31, 32sylancr 693 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
34 php3 8008 . . . . . 6 (((1...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
3510, 33, 34sylancr 693 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
36 fzfi 12588 . . . . . . 7 (2...(⌊‘𝐴)) ∈ Fin
37 ssfi 8042 . . . . . . 7 (((2...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin)
3836, 11, 37mp2an 703 . . . . . 6 ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin
39 hashsdom 12983 . . . . . 6 ((((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘𝐴)) ∈ Fin) → ((#‘((2...(⌊‘𝐴)) ∩ ℙ)) < (#‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴))))
4038, 10, 39mp2an 703 . . . . 5 ((#‘((2...(⌊‘𝐴)) ∩ ℙ)) < (#‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
4135, 40sylibr 222 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (#‘((2...(⌊‘𝐴)) ∩ ℙ)) < (#‘(1...(⌊‘𝐴))))
421flcld 12416 . . . . . . 7 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℤ)
43 ppival2 24571 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) = (#‘((2...(⌊‘𝐴)) ∩ ℙ)))
4442, 43syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (#‘((2...(⌊‘𝐴)) ∩ ℙ)))
45 ppifl 24603 . . . . . . 7 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
461, 45syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (π𝐴))
4744, 46eqtr3d 2645 . . . . 5 (𝐴 ∈ ℝ+ → (#‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
4847adantr 479 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (#‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
49 rpge0 11677 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
50 flge0nn0 12438 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
511, 49, 50syl2anc 690 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
52 hashfz1 12948 . . . . . 6 ((⌊‘𝐴) ∈ ℕ0 → (#‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5351, 52syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (#‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5453adantr 479 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (#‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5541, 48, 543brtr3d 4608 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < (⌊‘𝐴))
56 flle 12417 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
579, 56syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ≤ 𝐴)
585, 8, 9, 55, 57ltletrd 10048 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < 𝐴)
5946adantr 479 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π𝐴))
60 simpr 475 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (⌊‘𝐴) = 0)
6160fveq2d 6092 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π‘0))
62 2pos 10959 . . . . . 6 0 < 2
63 0re 9896 . . . . . . 7 0 ∈ ℝ
64 ppieq0 24619 . . . . . . 7 (0 ∈ ℝ → ((π‘0) = 0 ↔ 0 < 2))
6563, 64ax-mp 5 . . . . . 6 ((π‘0) = 0 ↔ 0 < 2)
6662, 65mpbir 219 . . . . 5 (π‘0) = 0
6761, 66syl6eq 2659 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = 0)
6859, 67eqtr3d 2645 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) = 0)
69 rpgt0 11676 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
7069adantr 479 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → 0 < 𝐴)
7168, 70eqbrtrd 4599 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) < 𝐴)
72 elnn0 11141 . . 3 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7351, 72sylib 206 . 2 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7458, 71, 73mpjaodan 822 1 (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  cin 3538  wss 3539  wpss 3540   class class class wbr 4577  cfv 5790  (class class class)co 6527  csdm 7817  Fincfn 7818  cr 9791  0cc0 9792  1c1 9793   < clt 9930  cle 9931  cn 10867  2c2 10917  0cn0 11139  cz 11210  cuz 11519  +crp 11664  ...cfz 12152  cfl 12408  #chash 12934  cprime 15169  πcppi 24537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-icc 12009  df-fz 12153  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-dvds 14768  df-prm 15170  df-ppi 24543
This theorem is referenced by:  chtppilimlem1  24879
  Copyright terms: Public domain W3C validator