![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppip1le | Structured version Visualization version GIF version |
Description: The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
ppip1le | ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 12679 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | zre 11462 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℤ → (⌊‘𝐴) ∈ ℝ) | |
3 | peano2re 10290 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → ((⌊‘𝐴) + 1) ∈ ℝ) |
5 | 4 | adantr 472 | . . . . . . 7 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
6 | ppicl 24945 | . . . . . . 7 ⊢ (((⌊‘𝐴) + 1) ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℕ0) |
8 | 7 | nn0red 11433 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ∈ ℝ) |
9 | ppiprm 24965 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1)) | |
10 | eqle 10220 | . . . . 5 ⊢ (((π‘((⌊‘𝐴) + 1)) ∈ ℝ ∧ (π‘((⌊‘𝐴) + 1)) = ((π‘(⌊‘𝐴)) + 1)) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) | |
11 | 8, 9, 10 | syl2anc 696 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
12 | ppinprm 24966 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) = (π‘(⌊‘𝐴))) | |
13 | ppicl 24945 | . . . . . . . . 9 ⊢ ((⌊‘𝐴) ∈ ℝ → (π‘(⌊‘𝐴)) ∈ ℕ0) | |
14 | 2, 13 | syl 17 | . . . . . . . 8 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℕ0) |
15 | 14 | nn0red 11433 | . . . . . . 7 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) ∈ ℝ) |
16 | 15 | adantr 472 | . . . . . 6 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ∈ ℝ) |
17 | 16 | lep1d 11036 | . . . . 5 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘(⌊‘𝐴)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
18 | 12, 17 | eqbrtrd 4750 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ¬ ((⌊‘𝐴) + 1) ∈ ℙ) → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
19 | 11, 18 | pm2.61dan 867 | . . 3 ⊢ ((⌊‘𝐴) ∈ ℤ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
20 | 1, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) ≤ ((π‘(⌊‘𝐴)) + 1)) |
21 | 1z 11488 | . . . . 5 ⊢ 1 ∈ ℤ | |
22 | fladdz 12709 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) | |
23 | 21, 22 | mpan2 709 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + 1)) = ((⌊‘𝐴) + 1)) |
24 | 23 | fveq2d 6276 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘((⌊‘𝐴) + 1))) |
25 | peano2re 10290 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
26 | ppifl 24974 | . . . 4 ⊢ ((𝐴 + 1) ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘(𝐴 + 1))) = (π‘(𝐴 + 1))) |
28 | 24, 27 | eqtr3d 2728 | . 2 ⊢ (𝐴 ∈ ℝ → (π‘((⌊‘𝐴) + 1)) = (π‘(𝐴 + 1))) |
29 | ppifl 24974 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π‘𝐴)) | |
30 | 29 | oveq1d 6748 | . 2 ⊢ (𝐴 ∈ ℝ → ((π‘(⌊‘𝐴)) + 1) = ((π‘𝐴) + 1)) |
31 | 20, 28, 30 | 3brtr3d 4759 | 1 ⊢ (𝐴 ∈ ℝ → (π‘(𝐴 + 1)) ≤ ((π‘𝐴) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1564 ∈ wcel 2071 class class class wbr 4728 ‘cfv 5969 (class class class)co 6733 ℝcr 10016 1c1 10018 + caddc 10020 ≤ cle 10156 ℕ0cn0 11373 ℤcz 11458 ⌊cfl 12674 ℙcprime 15476 πcppi 24908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-8 2073 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-rep 4847 ax-sep 4857 ax-nul 4865 ax-pow 4916 ax-pr 4979 ax-un 7034 ax-cnex 10073 ax-resscn 10074 ax-1cn 10075 ax-icn 10076 ax-addcl 10077 ax-addrcl 10078 ax-mulcl 10079 ax-mulrcl 10080 ax-mulcom 10081 ax-addass 10082 ax-mulass 10083 ax-distr 10084 ax-i2m1 10085 ax-1ne0 10086 ax-1rid 10087 ax-rnegex 10088 ax-rrecex 10089 ax-cnre 10090 ax-pre-lttri 10091 ax-pre-lttrn 10092 ax-pre-ltadd 10093 ax-pre-mulgt0 10094 ax-pre-sup 10095 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-nel 2968 df-ral 2987 df-rex 2988 df-reu 2989 df-rmo 2990 df-rab 2991 df-v 3274 df-sbc 3510 df-csb 3608 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-pss 3664 df-nul 3992 df-if 4163 df-pw 4236 df-sn 4254 df-pr 4256 df-tp 4258 df-op 4260 df-uni 4513 df-int 4552 df-iun 4598 df-br 4729 df-opab 4789 df-mpt 4806 df-tr 4829 df-id 5096 df-eprel 5101 df-po 5107 df-so 5108 df-fr 5145 df-we 5147 df-xp 5192 df-rel 5193 df-cnv 5194 df-co 5195 df-dm 5196 df-rn 5197 df-res 5198 df-ima 5199 df-pred 5761 df-ord 5807 df-on 5808 df-lim 5809 df-suc 5810 df-iota 5932 df-fun 5971 df-fn 5972 df-f 5973 df-f1 5974 df-fo 5975 df-f1o 5976 df-fv 5977 df-riota 6694 df-ov 6736 df-oprab 6737 df-mpt2 6738 df-om 7151 df-1st 7253 df-2nd 7254 df-wrecs 7495 df-recs 7556 df-rdg 7594 df-1o 7648 df-2o 7649 df-oadd 7652 df-er 7830 df-en 8041 df-dom 8042 df-sdom 8043 df-fin 8044 df-sup 8432 df-inf 8433 df-card 8846 df-cda 9071 df-pnf 10157 df-mnf 10158 df-xr 10159 df-ltxr 10160 df-le 10161 df-sub 10349 df-neg 10350 df-div 10766 df-nn 11102 df-2 11160 df-3 11161 df-n0 11374 df-z 11459 df-uz 11769 df-rp 11915 df-icc 12264 df-fz 12409 df-fl 12676 df-seq 12885 df-exp 12944 df-hash 13201 df-cj 13927 df-re 13928 df-im 13929 df-sqrt 14063 df-abs 14064 df-dvds 15072 df-prm 15477 df-ppi 24914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |