MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiprm Structured version   Visualization version   GIF version

Theorem ppiprm 24772
Description: The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiprm ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))

Proof of Theorem ppiprm
StepHypRef Expression
1 fzfid 12709 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...𝐴) ∈ Fin)
2 inss1 3816 . . . 4 ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)
3 ssfi 8125 . . . 4 (((2...𝐴) ∈ Fin ∧ ((2...𝐴) ∩ ℙ) ⊆ (2...𝐴)) → ((2...𝐴) ∩ ℙ) ∈ Fin)
41, 2, 3sylancl 693 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...𝐴) ∩ ℙ) ∈ Fin)
5 zre 11326 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65adantr 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℝ)
76ltp1d 10899 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 < (𝐴 + 1))
8 peano2z 11363 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 + 1) ∈ ℤ)
98adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℤ)
109zred 11426 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℝ)
116, 10ltnled 10129 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
127, 11mpbid 222 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ≤ 𝐴)
132sseli 3584 . . . . 5 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ∈ (2...𝐴))
14 elfzle2 12284 . . . . 5 ((𝐴 + 1) ∈ (2...𝐴) → (𝐴 + 1) ≤ 𝐴)
1513, 14syl 17 . . . 4 ((𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ) → (𝐴 + 1) ≤ 𝐴)
1612, 15nsyl 135 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ))
17 ovex 6633 . . . 4 (𝐴 + 1) ∈ V
18 hashunsng 13118 . . . 4 ((𝐴 + 1) ∈ V → ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (#‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((#‘((2...𝐴) ∩ ℙ)) + 1)))
1917, 18ax-mp 5 . . 3 ((((2...𝐴) ∩ ℙ) ∈ Fin ∧ ¬ (𝐴 + 1) ∈ ((2...𝐴) ∩ ℙ)) → (#‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((#‘((2...𝐴) ∩ ℙ)) + 1))
204, 16, 19syl2anc 692 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (#‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})) = ((#‘((2...𝐴) ∩ ℙ)) + 1))
21 ppival2 24749 . . . 4 ((𝐴 + 1) ∈ ℤ → (π‘(𝐴 + 1)) = (#‘((2...(𝐴 + 1)) ∩ ℙ)))
229, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (#‘((2...(𝐴 + 1)) ∩ ℙ)))
23 2z 11354 . . . . . . . 8 2 ∈ ℤ
24 zcn 11327 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2524adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℂ)
26 ax-1cn 9939 . . . . . . . . . . 11 1 ∈ ℂ
27 pncan 10232 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
2825, 26, 27sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) = 𝐴)
29 prmuz2 15327 . . . . . . . . . . . 12 ((𝐴 + 1) ∈ ℙ → (𝐴 + 1) ∈ (ℤ‘2))
3029adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ (ℤ‘2))
31 uz2m1nn 11707 . . . . . . . . . . 11 ((𝐴 + 1) ∈ (ℤ‘2) → ((𝐴 + 1) − 1) ∈ ℕ)
3230, 31syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((𝐴 + 1) − 1) ∈ ℕ)
3328, 32eqeltrrd 2705 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ ℕ)
34 nnuz 11667 . . . . . . . . . 10 ℕ = (ℤ‘1)
35 2m1e1 11080 . . . . . . . . . . 11 (2 − 1) = 1
3635fveq2i 6153 . . . . . . . . . 10 (ℤ‘(2 − 1)) = (ℤ‘1)
3734, 36eqtr4i 2651 . . . . . . . . 9 ℕ = (ℤ‘(2 − 1))
3833, 37syl6eleq 2714 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → 𝐴 ∈ (ℤ‘(2 − 1)))
39 fzsuc2 12337 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝐴 ∈ (ℤ‘(2 − 1))) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4023, 38, 39sylancr 694 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (2...(𝐴 + 1)) = ((2...𝐴) ∪ {(𝐴 + 1)}))
4140ineq1d 3796 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ))
42 indir 3856 . . . . . 6 (((2...𝐴) ∪ {(𝐴 + 1)}) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ))
4341, 42syl6eq 2676 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)))
44 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (𝐴 + 1) ∈ ℙ)
4544snssd 4314 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → {(𝐴 + 1)} ⊆ ℙ)
46 df-ss 3574 . . . . . . 7 ({(𝐴 + 1)} ⊆ ℙ ↔ ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4745, 46sylib 208 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ({(𝐴 + 1)} ∩ ℙ) = {(𝐴 + 1)})
4847uneq2d 3750 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (((2...𝐴) ∩ ℙ) ∪ ({(𝐴 + 1)} ∩ ℙ)) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
4943, 48eqtrd 2660 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((2...(𝐴 + 1)) ∩ ℙ) = (((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)}))
5049fveq2d 6154 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (#‘((2...(𝐴 + 1)) ∩ ℙ)) = (#‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
5122, 50eqtrd 2660 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = (#‘(((2...𝐴) ∩ ℙ) ∪ {(𝐴 + 1)})))
52 ppival2 24749 . . . 4 (𝐴 ∈ ℤ → (π𝐴) = (#‘((2...𝐴) ∩ ℙ)))
5352adantr 481 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π𝐴) = (#‘((2...𝐴) ∩ ℙ)))
5453oveq1d 6620 . 2 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → ((π𝐴) + 1) = ((#‘((2...𝐴) ∩ ℙ)) + 1))
5520, 51, 543eqtr4d 2670 1 ((𝐴 ∈ ℤ ∧ (𝐴 + 1) ∈ ℙ) → (π‘(𝐴 + 1)) = ((π𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  Vcvv 3191  cun 3558  cin 3559  wss 3560  {csn 4153   class class class wbr 4618  cfv 5850  (class class class)co 6605  Fincfn 7900  cc 9879  cr 9880  1c1 9882   + caddc 9884   < clt 10019  cle 10020  cmin 10211  cn 10965  2c2 11015  cz 11322  cuz 11631  ...cfz 12265  #chash 13054  cprime 15304  πcppi 24715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-icc 12121  df-fz 12266  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-prm 15305  df-ppi 24721
This theorem is referenced by:  ppip1le  24782  ppi1i  24789  bposlem5  24908
  Copyright terms: Public domain W3C validator