MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   GIF version

Theorem ppisval 24743
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3817 . . . . . . . 8 ((0[,]𝐴) ∩ ℙ) ⊆ ℙ
2 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((0[,]𝐴) ∩ ℙ))
31, 2sseldi 3585 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℙ)
4 prmuz2 15339 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
53, 4syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
6 prmz 15320 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
73, 6syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ℤ)
8 flcl 12543 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
98adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ ℤ)
10 inss1 3816 . . . . . . . . . . 11 ((0[,]𝐴) ∩ ℙ) ⊆ (0[,]𝐴)
1110, 2sseldi 3585 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (0[,]𝐴))
12 0re 9991 . . . . . . . . . . 11 0 ∈ ℝ
13 simpl 473 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝐴 ∈ ℝ)
14 elicc2 12187 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1512, 13, 14sylancr 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ (0[,]𝐴) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴)))
1611, 15mpbid 222 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥𝐴))
1716simp3d 1073 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥𝐴)
18 flge 12553 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
197, 18syldan 487 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑥𝐴𝑥 ≤ (⌊‘𝐴)))
2017, 19mpbid 222 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ≤ (⌊‘𝐴))
21 eluz2 11644 . . . . . . 7 ((⌊‘𝐴) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ ∧ 𝑥 ≤ (⌊‘𝐴)))
227, 9, 20, 21syl3anbrc 1244 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
23 elfzuzb 12285 . . . . . 6 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
245, 22, 23sylanbrc 697 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
2524, 3elind 3781 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
2625ex 450 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2726ssrdv 3593 . 2 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
28 2z 11360 . . . . 5 2 ∈ ℤ
29 fzval2 12278 . . . . 5 ((2 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
3028, 8, 29sylancr 694 . . . 4 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) = ((2[,](⌊‘𝐴)) ∩ ℤ))
31 inss1 3816 . . . . 5 ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (2[,](⌊‘𝐴))
3212a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ∈ ℝ)
33 id 22 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
34 0le2 11062 . . . . . . 7 0 ≤ 2
3534a1i 11 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ 2)
36 flle 12547 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
37 iccss 12190 . . . . . 6 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 2 ∧ (⌊‘𝐴) ≤ 𝐴)) → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3832, 33, 35, 36, 37syl22anc 1324 . . . . 5 (𝐴 ∈ ℝ → (2[,](⌊‘𝐴)) ⊆ (0[,]𝐴))
3931, 38syl5ss 3598 . . . 4 (𝐴 ∈ ℝ → ((2[,](⌊‘𝐴)) ∩ ℤ) ⊆ (0[,]𝐴))
4030, 39eqsstrd 3623 . . 3 (𝐴 ∈ ℝ → (2...(⌊‘𝐴)) ⊆ (0[,]𝐴))
41 ssrin 3821 . . 3 ((2...(⌊‘𝐴)) ⊆ (0[,]𝐴) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4240, 41syl 17 . 2 (𝐴 ∈ ℝ → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((0[,]𝐴) ∩ ℙ))
4327, 42eqssd 3604 1 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3558  wss 3559   class class class wbr 4618  cfv 5852  (class class class)co 6610  cr 9886  0cc0 9887  cle 10026  2c2 11021  cz 11328  cuz 11638  [,]cicc 12127  ...cfz 12275  cfl 12538  cprime 15316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-icc 12131  df-fz 12276  df-fl 12540  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-prm 15317
This theorem is referenced by:  ppisval2  24744  ppifi  24745  ppival2  24767  chtfl  24788  chtprm  24792  chtnprm  24793  ppifl  24799  cht1  24804  chtlepsi  24844  chpval2  24856  chpub  24858
  Copyright terms: Public domain W3C validator