MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval2 Structured version   Visualization version   GIF version

Theorem ppisval2 24765
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval2 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ))

Proof of Theorem ppisval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ppisval 24764 . . 3 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
21adantr 481 . 2 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ))
3 fzss1 12338 . . . . 5 (2 ∈ (ℤ𝑀) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴)))
43adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴)))
5 ssrin 3822 . . . 4 ((2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴)) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((𝑀...(⌊‘𝐴)) ∩ ℙ))
64, 5syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((𝑀...(⌊‘𝐴)) ∩ ℙ))
7 simpr 477 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ))
8 elin 3780 . . . . . . . . . 10 (𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ) ↔ (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ))
97, 8sylib 208 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ))
109simprd 479 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ℙ)
11 prmuz2 15351 . . . . . . . 8 (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ‘2))
1210, 11syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (ℤ‘2))
139simpld 475 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (𝑀...(⌊‘𝐴)))
14 elfzuz3 12297 . . . . . . . 8 (𝑥 ∈ (𝑀...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ𝑥))
1513, 14syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ𝑥))
16 elfzuzb 12294 . . . . . . 7 (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ‘2) ∧ (⌊‘𝐴) ∈ (ℤ𝑥)))
1712, 15, 16sylanbrc 697 . . . . . 6 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴)))
1817, 10elind 3782 . . . . 5 (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))
1918ex 450 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → (𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)))
2019ssrdv 3594 . . 3 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((𝑀...(⌊‘𝐴)) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ))
216, 20eqssd 3605 . 2 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ))
222, 21eqtrd 2655 1 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3559  wss 3560  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896  2c2 11030  cuz 11647  [,]cicc 12136  ...cfz 12284  cfl 12547  cprime 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-icc 12140  df-fz 12285  df-fl 12549  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-prm 15329
This theorem is referenced by:  ppival2g  24789  chtdif  24818  prmorcht  24838  chtppilimlem1  25096
  Copyright terms: Public domain W3C validator