Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodss4v Structured version   Visualization version   GIF version

Theorem pprodss4v 31686
Description: The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pprodss4v pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))

Proof of Theorem pprodss4v
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 31656 . 2 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
2 txprel 31681 . . 3 Rel ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
3 txpss3v 31680 . . . . . . 7 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ (V × (V × V))
43sseli 3584 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
5 opelxp2 5121 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) → 𝑦 ∈ (V × V))
64, 5syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑦 ∈ (V × V))
7 elvv 5148 . . . . . 6 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
8 opeq2 4378 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ⟨𝑧, 𝑤⟩⟩)
98eleq1d 2683 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))))
10 df-br 4624 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))))
11 vex 3193 . . . . . . . . . . 11 𝑥 ∈ V
12 vex 3193 . . . . . . . . . . 11 𝑧 ∈ V
13 vex 3193 . . . . . . . . . . 11 𝑤 ∈ V
1411, 12, 13brtxp 31682 . . . . . . . . . 10 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤))
1511, 12brco 5262 . . . . . . . . . . . 12 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧 ↔ ∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧))
16 vex 3193 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1716brres 5372 . . . . . . . . . . . . . . 15 (𝑥(1st ↾ (V × V))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (V × V)))
1817simprbi 480 . . . . . . . . . . . . . 14 (𝑥(1st ↾ (V × V))𝑦𝑥 ∈ (V × V))
1918adantr 481 . . . . . . . . . . . . 13 ((𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2019exlimiv 1855 . . . . . . . . . . . 12 (∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2115, 20sylbi 207 . . . . . . . . . . 11 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥 ∈ (V × V))
2221adantr 481 . . . . . . . . . 10 ((𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤) → 𝑥 ∈ (V × V))
2314, 22sylbi 207 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ → 𝑥 ∈ (V × V))
2410, 23sylbir 225 . . . . . . . 8 (⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
259, 24syl6bi 243 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
2625exlimivv 1857 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
277, 26sylbi 207 . . . . 5 (𝑦 ∈ (V × V) → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
286, 27mpcom 38 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
29 opelxp 5116 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)) ↔ (𝑥 ∈ (V × V) ∧ 𝑦 ∈ (V × V)))
3028, 6, 29sylanbrc 697 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)))
312, 30relssi 5182 . 2 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ ((V × V) × (V × V))
321, 31eqsstri 3620 1 pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3190  wss 3560  cop 4161   class class class wbr 4623   × cxp 5082  cres 5086  ccom 5088  1st c1st 7126  2nd c2nd 7127  ctxp 31631  pprodcpprod 31632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fo 5863  df-fv 5865  df-1st 7128  df-2nd 7129  df-txp 31655  df-pprod 31656
This theorem is referenced by:  brpprod3a  31688
  Copyright terms: Public domain W3C validator