MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 9419
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 4662 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2826 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 8563 . . . . . . . 8 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
4 entr 8549 . . . . . . . . . . . 12 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
5 1sdom2 8705 . . . . . . . . . . . . . . 15 1o ≺ 2o
6 sdomnen 8526 . . . . . . . . . . . . . . 15 (1o ≺ 2o → ¬ 1o ≈ 2o)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 ¬ 1o ≈ 2o
8 ensym 8546 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
9 entr 8549 . . . . . . . . . . . . . . . 16 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
109ex 413 . . . . . . . . . . . . . . 15 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
118, 10syl 17 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
127, 11mtoi 200 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1312a1d 25 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
144, 13syl 17 . . . . . . . . . . 11 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1514ex 413 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
16 prex 5323 . . . . . . . . . . 11 {𝐴, 𝐵} ∈ V
17 eqeng 8531 . . . . . . . . . . 11 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
1816, 17ax-mp 5 . . . . . . . . . 10 ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})
1915, 18syl11 33 . . . . . . . . 9 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2019a1dd 50 . . . . . . . 8 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
213, 20syl 17 . . . . . . 7 (𝐴𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2221com23 86 . . . . . 6 (𝐴𝐶 → (𝐵𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2322imp 407 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2423pm2.43a 54 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
252, 24syl5 34 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2625necon2ad 3028 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
27 pr2nelem 9418 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
28273expia 1113 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2926, 28impbid 213 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  {cpr 4559   class class class wbr 5057  1oc1o 8084  2oc2o 8085  cen 8494  csdm 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500
This theorem is referenced by:  prdom2  9420  isprm2lem  16013  pmtrrn2  18517  mdetunilem7  21155  trsp2cyc  30692  en2pr  39784  pr2cv  39785  pren2  39790
  Copyright terms: Public domain W3C validator