Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas3 Structured version   Visualization version   GIF version

Theorem prdsbas3 16341
 Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsbasmpt2.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
prdsbas3 (𝜑𝐵 = X𝑥𝐼 𝐾)
Distinct variable group:   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsbas3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . . 4 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . . 4 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . . 4 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2758 . . . . . 6 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6179 . . . . 5 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
91, 2, 3, 4, 8prdsbas2 16329 . . 3 (𝜑𝐵 = X𝑦𝐼 (Base‘((𝑥𝐼𝑅)‘𝑦)))
10 nfcv 2900 . . . . 5 𝑥Base
11 nffvmpt1 6358 . . . . 5 𝑥((𝑥𝐼𝑅)‘𝑦)
1210, 11nffv 6357 . . . 4 𝑥(Base‘((𝑥𝐼𝑅)‘𝑦))
13 nfcv 2900 . . . 4 𝑦(Base‘((𝑥𝐼𝑅)‘𝑥))
14 fveq2 6350 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐼𝑅)‘𝑦) = ((𝑥𝐼𝑅)‘𝑥))
1514fveq2d 6354 . . . 4 (𝑦 = 𝑥 → (Base‘((𝑥𝐼𝑅)‘𝑦)) = (Base‘((𝑥𝐼𝑅)‘𝑥)))
1612, 13, 15cbvixp 8089 . . 3 X𝑦𝐼 (Base‘((𝑥𝐼𝑅)‘𝑦)) = X𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥))
179, 16syl6eq 2808 . 2 (𝜑𝐵 = X𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥)))
186fvmpt2 6451 . . . . . 6 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
1918fveq2d 6354 . . . . 5 ((𝑥𝐼𝑅𝑋) → (Base‘((𝑥𝐼𝑅)‘𝑥)) = (Base‘𝑅))
20 prdsbasmpt2.k . . . . 5 𝐾 = (Base‘𝑅)
2119, 20syl6eqr 2810 . . . 4 ((𝑥𝐼𝑅𝑋) → (Base‘((𝑥𝐼𝑅)‘𝑥)) = 𝐾)
2221ralimiaa 3087 . . 3 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥)) = 𝐾)
23 ixpeq2 8086 . . 3 (∀𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥)) = 𝐾X𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥)) = X𝑥𝐼 𝐾)
245, 22, 233syl 18 . 2 (𝜑X𝑥𝐼 (Base‘((𝑥𝐼𝑅)‘𝑥)) = X𝑥𝐼 𝐾)
2517, 24eqtrd 2792 1 (𝜑𝐵 = X𝑥𝐼 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1630   ∈ wcel 2137  ∀wral 3048   ↦ cmpt 4879   Fn wfn 6042  ‘cfv 6047  (class class class)co 6811  Xcixp 8072  Basecbs 16057  Xscprds 16306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-ixp 8073  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16154  df-mulr 16155  df-sca 16157  df-vsca 16158  df-ip 16159  df-tset 16160  df-ple 16161  df-ds 16164  df-hom 16166  df-cco 16167  df-prds 16308 This theorem is referenced by:  prdsbasmpt2  16342  ressprdsds  22375  prdsbl  22495  prdsbnd2  33905
 Copyright terms: Public domain W3C validator