MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Visualization version   GIF version

Theorem prdsbl 22497
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 22511) - for a counterexample the point 𝑝 in ℝ↑ℕ whose 𝑛-th coordinate is 1 − 1 / 𝑛 is in X𝑛 ∈ ℕball(0, 1) but is not in the 1-ball of the product (since 𝑑(0, 𝑝) = 1).

The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbl.b 𝐵 = (Base‘𝑌)
prdsbl.v 𝑉 = (Base‘𝑅)
prdsbl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsbl.d 𝐷 = (dist‘𝑌)
prdsbl.s (𝜑𝑆𝑊)
prdsbl.i (𝜑𝐼 ∈ Fin)
prdsbl.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsbl.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
prdsbl.p (𝜑𝑃𝐵)
prdsbl.a (𝜑𝐴 ∈ ℝ*)
prdsbl.g (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
prdsbl (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsbl
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbl.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
3 prdsbl.s . . . . . . . . 9 (𝜑𝑆𝑊)
4 prdsbl.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
5 prdsbl.r . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝑅𝑍)
65ralrimiva 3104 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
7 prdsbl.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
81, 2, 3, 4, 6, 7prdsbas3 16343 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
98eleq2d 2825 . . . . . . 7 (𝜑 → (𝑓𝐵𝑓X𝑥𝐼 𝑉))
109biimpa 502 . . . . . 6 ((𝜑𝑓𝐵) → 𝑓X𝑥𝐼 𝑉)
11 ixpfn 8080 . . . . . 6 (𝑓X𝑥𝐼 𝑉𝑓 Fn 𝐼)
12 vex 3343 . . . . . . . 8 𝑓 ∈ V
1312elixp 8081 . . . . . . 7 (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1413baib 982 . . . . . 6 (𝑓 Fn 𝐼 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1510, 11, 143syl 18 . . . . 5 ((𝜑𝑓𝐵) → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
16 prdsbl.m . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
1716adantlr 753 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
18 prdsbl.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 764 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐴 ∈ ℝ*)
20 prdsbl.p . . . . . . . . . 10 (𝜑𝑃𝐵)
211, 2, 3, 4, 6, 7, 20prdsbascl 16345 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2221adantr 472 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2322r19.21bi 3070 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
243adantr 472 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑆𝑊)
254adantr 472 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝐼 ∈ Fin)
266adantr 472 . . . . . . . . 9 ((𝜑𝑓𝐵) → ∀𝑥𝐼 𝑅𝑍)
27 simpr 479 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑓𝐵)
281, 2, 24, 25, 26, 7, 27prdsbascl 16345 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
2928r19.21bi 3070 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
30 elbl2 22396 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝐴 ∈ ℝ*) ∧ ((𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉)) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3117, 19, 23, 29, 30syl22anc 1478 . . . . . 6 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3231ralbidva 3123 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
33 xmetcl 22337 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3417, 23, 29, 33syl3anc 1477 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3534ralrimiva 3104 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
36 eqid 2760 . . . . . . . . 9 (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))
37 breq1 4807 . . . . . . . . 9 (𝑧 = ((𝑃𝑥)𝐸(𝑓𝑥)) → (𝑧 < 𝐴 ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3836, 37ralrnmpt 6531 . . . . . . . 8 (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3935, 38syl 17 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
40 prdsbl.g . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4140adantr 472 . . . . . . . . 9 ((𝜑𝑓𝐵) → 0 < 𝐴)
42 c0ex 10226 . . . . . . . . . 10 0 ∈ V
43 breq1 4807 . . . . . . . . . 10 (𝑧 = 0 → (𝑧 < 𝐴 ↔ 0 < 𝐴))
4442, 43ralsn 4366 . . . . . . . . 9 (∀𝑧 ∈ {0}𝑧 < 𝐴 ↔ 0 < 𝐴)
4541, 44sylibr 224 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑧 ∈ {0}𝑧 < 𝐴)
46 ralunb 3937 . . . . . . . . 9 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴))
4720adantr 472 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑃𝐵)
48 prdsbl.e . . . . . . . . . . . 12 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
49 prdsbl.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 16347 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
51 xrltso 12167 . . . . . . . . . . . . 13 < Or ℝ*
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → < Or ℝ*)
5336rnmpt 5526 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))}
54 abrexfi 8431 . . . . . . . . . . . . . . 15 (𝐼 ∈ Fin → {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))} ∈ Fin)
5553, 54syl5eqel 2843 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
5625, 55syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
57 snfi 8203 . . . . . . . . . . . . 13 {0} ∈ Fin
58 unfi 8392 . . . . . . . . . . . . 13 ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
5956, 57, 58sylancl 697 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
60 ssun2 3920 . . . . . . . . . . . . . 14 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
6142snss 4460 . . . . . . . . . . . . . 14 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
6260, 61mpbir 221 . . . . . . . . . . . . 13 0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
63 ne0i 4064 . . . . . . . . . . . . 13 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6462, 63mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6534, 36fmptd 6548 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
66 frn 6214 . . . . . . . . . . . . . 14 ((𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ* → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
68 0xr 10278 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6968a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → 0 ∈ ℝ*)
7069snssd 4485 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → {0} ⊆ ℝ*)
7167, 70unssd 3932 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
72 fisupcl 8540 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7352, 59, 64, 71, 72syl13anc 1479 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7450, 73eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
75 breq1 4807 . . . . . . . . . . 11 (𝑧 = (𝑃𝐷𝑓) → (𝑧 < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
7675rspcv 3445 . . . . . . . . . 10 ((𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7774, 76syl 17 . . . . . . . . 9 ((𝜑𝑓𝐵) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7846, 77syl5bir 233 . . . . . . . 8 ((𝜑𝑓𝐵) → ((∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴) → (𝑃𝐷𝑓) < 𝐴))
7945, 78mpan2d 712 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
8039, 79sylbird 250 . . . . . 6 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
8171adantr 472 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
82 ssun1 3919 . . . . . . . . . . 11 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
83 ovex 6841 . . . . . . . . . . . . . 14 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ V
8483elabrex 6664 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8584adantl 473 . . . . . . . . . . . 12 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8685, 53syl6eleqr 2850 . . . . . . . . . . 11 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))))
8782, 86sseldi 3742 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
88 supxrub 12347 . . . . . . . . . 10 (((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8981, 87, 88syl2anc 696 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
9050adantr 472 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
9189, 90breqtrrd 4832 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓))
921, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 22375 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
9392ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐷 ∈ (∞Met‘𝐵))
9420ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑃𝐵)
9527adantr 472 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑓𝐵)
96 xmetcl 22337 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝑓𝐵) → (𝑃𝐷𝑓) ∈ ℝ*)
9793, 94, 95, 96syl3anc 1477 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) ∈ ℝ*)
98 xrlelttr 12180 . . . . . . . . 9 ((((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝑃𝐷𝑓) ∈ ℝ*𝐴 ∈ ℝ*) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9934, 97, 19, 98syl3anc 1477 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10091, 99mpand 713 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝐷𝑓) < 𝐴 → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
101100ralrimdva 3107 . . . . . 6 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴 → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10280, 101impbid 202 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
10315, 32, 1023bitrrd 295 . . . 4 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
104103pm5.32da 676 . . 3 (𝜑 → ((𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
105 elbl 22394 . . . 4 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝐴 ∈ ℝ*) → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10692, 20, 18, 105syl3anc 1477 . . 3 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10721r19.21bi 3070 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
10818adantr 472 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐴 ∈ ℝ*)
109 blssm 22424 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉𝐴 ∈ ℝ*) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
11016, 107, 108, 109syl3anc 1477 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
111110ralrimiva 3104 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
112 ss2ixp 8087 . . . . . . 7 (∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
113111, 112syl 17 . . . . . 6 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
114113, 8sseqtr4d 3783 . . . . 5 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝐵)
115114sseld 3743 . . . 4 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) → 𝑓𝐵))
116115pm4.71rd 670 . . 3 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
117104, 106, 1163bitr4d 300 . 2 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ 𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
118117eqrdv 2758 1 (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {cab 2746  wne 2932  wral 3050  wrex 3051  cun 3713  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cmpt 4881   Or wor 5186   × cxp 5264  ran crn 5267  cres 5268   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  Xcixp 8074  Fincfn 8121  supcsup 8511  0cc0 10128  *cxr 10265   < clt 10266  cle 10267  Basecbs 16059  distcds 16152  Xscprds 16308  ∞Metcxmt 19933  ballcbl 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-prds 16310  df-psmet 19940  df-xmet 19941  df-bl 19943
This theorem is referenced by:  prdsxmslem2  22535  prdstotbnd  33906  prdsbnd2  33907
  Copyright terms: Public domain W3C validator