MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Structured version   Visualization version   GIF version

Theorem prdsbl 22206
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 22220) - for a counterexample the point 𝑝 in ℝ↑ℕ whose 𝑛-th coordinate is 1 − 1 / 𝑛 is in X𝑛 ∈ ℕball(0, 1) but is not in the 1-ball of the product (since 𝑑(0, 𝑝) = 1).

The last assumption, 0 < 𝐴, is needed only in the case 𝐼 = ∅, when the right side evaluates to {∅} and the left evaluates to if 𝐴 ≤ 0 and {∅} if 0 < 𝐴. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbl.b 𝐵 = (Base‘𝑌)
prdsbl.v 𝑉 = (Base‘𝑅)
prdsbl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsbl.d 𝐷 = (dist‘𝑌)
prdsbl.s (𝜑𝑆𝑊)
prdsbl.i (𝜑𝐼 ∈ Fin)
prdsbl.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsbl.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
prdsbl.p (𝜑𝑃𝐵)
prdsbl.a (𝜑𝐴 ∈ ℝ*)
prdsbl.g (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
prdsbl (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsbl
Dummy variables 𝑓 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbl.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
3 prdsbl.s . . . . . . . . 9 (𝜑𝑆𝑊)
4 prdsbl.i . . . . . . . . 9 (𝜑𝐼 ∈ Fin)
5 prdsbl.r . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝑅𝑍)
65ralrimiva 2960 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
7 prdsbl.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
81, 2, 3, 4, 6, 7prdsbas3 16062 . . . . . . . 8 (𝜑𝐵 = X𝑥𝐼 𝑉)
98eleq2d 2684 . . . . . . 7 (𝜑 → (𝑓𝐵𝑓X𝑥𝐼 𝑉))
109biimpa 501 . . . . . 6 ((𝜑𝑓𝐵) → 𝑓X𝑥𝐼 𝑉)
11 ixpfn 7858 . . . . . 6 (𝑓X𝑥𝐼 𝑉𝑓 Fn 𝐼)
12 vex 3189 . . . . . . . 8 𝑓 ∈ V
1312elixp 7859 . . . . . . 7 (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1413baib 943 . . . . . 6 (𝑓 Fn 𝐼 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
1510, 11, 143syl 18 . . . . 5 ((𝜑𝑓𝐵) → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴)))
16 prdsbl.m . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
1716adantlr 750 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
18 prdsbl.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1918ad2antrr 761 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐴 ∈ ℝ*)
20 prdsbl.p . . . . . . . . . 10 (𝜑𝑃𝐵)
211, 2, 3, 4, 6, 7, 20prdsbascl 16064 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2221adantr 481 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑃𝑥) ∈ 𝑉)
2322r19.21bi 2927 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
243adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑆𝑊)
254adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝐼 ∈ Fin)
266adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → ∀𝑥𝐼 𝑅𝑍)
27 simpr 477 . . . . . . . . 9 ((𝜑𝑓𝐵) → 𝑓𝐵)
281, 2, 24, 25, 26, 7, 27prdsbascl 16064 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
2928r19.21bi 2927 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
30 elbl2 22105 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝐴 ∈ ℝ*) ∧ ((𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉)) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3117, 19, 23, 29, 30syl22anc 1324 . . . . . 6 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3231ralbidva 2979 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 (𝑓𝑥) ∈ ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
33 xmetcl 22046 . . . . . . . . . 10 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉 ∧ (𝑓𝑥) ∈ 𝑉) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3417, 23, 29, 33syl3anc 1323 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
3534ralrimiva 2960 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ*)
36 eqid 2621 . . . . . . . . 9 (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))
37 breq1 4616 . . . . . . . . 9 (𝑧 = ((𝑃𝑥)𝐸(𝑓𝑥)) → (𝑧 < 𝐴 ↔ ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3836, 37ralrnmpt 6324 . . . . . . . 8 (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
3935, 38syl 17 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ↔ ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
40 prdsbl.g . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
4140adantr 481 . . . . . . . . 9 ((𝜑𝑓𝐵) → 0 < 𝐴)
42 c0ex 9978 . . . . . . . . . 10 0 ∈ V
43 breq1 4616 . . . . . . . . . 10 (𝑧 = 0 → (𝑧 < 𝐴 ↔ 0 < 𝐴))
4442, 43ralsn 4193 . . . . . . . . 9 (∀𝑧 ∈ {0}𝑧 < 𝐴 ↔ 0 < 𝐴)
4541, 44sylibr 224 . . . . . . . 8 ((𝜑𝑓𝐵) → ∀𝑧 ∈ {0}𝑧 < 𝐴)
46 ralunb 3772 . . . . . . . . 9 (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 ↔ (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴))
4720adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → 𝑃𝐵)
48 prdsbl.e . . . . . . . . . . . 12 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
49 prdsbl.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 16066 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
51 xrltso 11918 . . . . . . . . . . . . 13 < Or ℝ*
5251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → < Or ℝ*)
5336rnmpt 5331 . . . . . . . . . . . . . . 15 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) = {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))}
54 abrexfi 8210 . . . . . . . . . . . . . . 15 (𝐼 ∈ Fin → {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))} ∈ Fin)
5553, 54syl5eqel 2702 . . . . . . . . . . . . . 14 (𝐼 ∈ Fin → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
5625, 55syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin)
57 snfi 7982 . . . . . . . . . . . . 13 {0} ∈ Fin
58 unfi 8171 . . . . . . . . . . . . 13 ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
5956, 57, 58sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin)
60 ssun2 3755 . . . . . . . . . . . . . 14 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
6142snss 4286 . . . . . . . . . . . . . 14 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
6260, 61mpbir 221 . . . . . . . . . . . . 13 0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
63 ne0i 3897 . . . . . . . . . . . . 13 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6462, 63mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅)
6534, 36fmptd 6340 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ*)
66 frn 6010 . . . . . . . . . . . . . 14 ((𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))):𝐼⟶ℝ* → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ ℝ*)
68 0xr 10030 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6968a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐵) → 0 ∈ ℝ*)
7069snssd 4309 . . . . . . . . . . . . 13 ((𝜑𝑓𝐵) → {0} ⊆ ℝ*)
7167, 70unssd 3767 . . . . . . . . . . . 12 ((𝜑𝑓𝐵) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
72 fisupcl 8319 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7352, 59, 64, 71, 72syl13anc 1325 . . . . . . . . . . 11 ((𝜑𝑓𝐵) → sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
7450, 73eqeltrd 2698 . . . . . . . . . 10 ((𝜑𝑓𝐵) → (𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
75 breq1 4616 . . . . . . . . . . 11 (𝑧 = (𝑃𝐷𝑓) → (𝑧 < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
7675rspcv 3291 . . . . . . . . . 10 ((𝑃𝐷𝑓) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7774, 76syl 17 . . . . . . . . 9 ((𝜑𝑓𝐵) → (∀𝑧 ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
7846, 77syl5bir 233 . . . . . . . 8 ((𝜑𝑓𝐵) → ((∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 ∧ ∀𝑧 ∈ {0}𝑧 < 𝐴) → (𝑃𝐷𝑓) < 𝐴))
7945, 78mpan2d 709 . . . . . . 7 ((𝜑𝑓𝐵) → (∀𝑧 ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥)))𝑧 < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
8039, 79sylbird 250 . . . . . 6 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 → (𝑃𝐷𝑓) < 𝐴))
8171adantr 481 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ*)
82 ssun1 3754 . . . . . . . . . . 11 ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ⊆ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})
83 ovex 6632 . . . . . . . . . . . . . 14 ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ V
8483elabrex 6455 . . . . . . . . . . . . 13 (𝑥𝐼 → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8584adantl 482 . . . . . . . . . . . 12 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ {𝑦 ∣ ∃𝑥𝐼 𝑦 = ((𝑃𝑥)𝐸(𝑓𝑥))})
8685, 53syl6eleqr 2709 . . . . . . . . . . 11 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))))
8782, 86sseldi 3581 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}))
88 supxrub 12097 . . . . . . . . . 10 (((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}) ⊆ ℝ* ∧ ((𝑃𝑥)𝐸(𝑓𝑥)) ∈ (ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0})) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
8981, 87, 88syl2anc 692 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
9050adantr 481 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) = sup((ran (𝑥𝐼 ↦ ((𝑃𝑥)𝐸(𝑓𝑥))) ∪ {0}), ℝ*, < ))
9189, 90breqtrrd 4641 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓))
921, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 22084 . . . . . . . . . . 11 (𝜑𝐷 ∈ (∞Met‘𝐵))
9392ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝐷 ∈ (∞Met‘𝐵))
9420ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑃𝐵)
9527adantr 481 . . . . . . . . . 10 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → 𝑓𝐵)
96 xmetcl 22046 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝑓𝐵) → (𝑃𝐷𝑓) ∈ ℝ*)
9793, 94, 95, 96syl3anc 1323 . . . . . . . . 9 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → (𝑃𝐷𝑓) ∈ ℝ*)
98 xrlelttr 11931 . . . . . . . . 9 ((((𝑃𝑥)𝐸(𝑓𝑥)) ∈ ℝ* ∧ (𝑃𝐷𝑓) ∈ ℝ*𝐴 ∈ ℝ*) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
9934, 97, 19, 98syl3anc 1323 . . . . . . . 8 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((((𝑃𝑥)𝐸(𝑓𝑥)) ≤ (𝑃𝐷𝑓) ∧ (𝑃𝐷𝑓) < 𝐴) → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10091, 99mpand 710 . . . . . . 7 (((𝜑𝑓𝐵) ∧ 𝑥𝐼) → ((𝑃𝐷𝑓) < 𝐴 → ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
101100ralrimdva 2963 . . . . . 6 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴 → ∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴))
10280, 101impbid 202 . . . . 5 ((𝜑𝑓𝐵) → (∀𝑥𝐼 ((𝑃𝑥)𝐸(𝑓𝑥)) < 𝐴 ↔ (𝑃𝐷𝑓) < 𝐴))
10315, 32, 1023bitrrd 295 . . . 4 ((𝜑𝑓𝐵) → ((𝑃𝐷𝑓) < 𝐴𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
104103pm5.32da 672 . . 3 (𝜑 → ((𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
105 elbl 22103 . . . 4 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑃𝐵𝐴 ∈ ℝ*) → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10692, 20, 18, 105syl3anc 1323 . . 3 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ (𝑓𝐵 ∧ (𝑃𝐷𝑓) < 𝐴)))
10721r19.21bi 2927 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑃𝑥) ∈ 𝑉)
10818adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐴 ∈ ℝ*)
109 blssm 22133 . . . . . . . . 9 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑃𝑥) ∈ 𝑉𝐴 ∈ ℝ*) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
11016, 107, 108, 109syl3anc 1323 . . . . . . . 8 ((𝜑𝑥𝐼) → ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
111110ralrimiva 2960 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉)
112 ss2ixp 7865 . . . . . . 7 (∀𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝑉X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
113111, 112syl 17 . . . . . 6 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ X𝑥𝐼 𝑉)
114113, 8sseqtr4d 3621 . . . . 5 (𝜑X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ⊆ 𝐵)
115114sseld 3582 . . . 4 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) → 𝑓𝐵))
116115pm4.71rd 666 . . 3 (𝜑 → (𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴) ↔ (𝑓𝐵𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))))
117104, 106, 1163bitr4d 300 . 2 (𝜑 → (𝑓 ∈ (𝑃(ball‘𝐷)𝐴) ↔ 𝑓X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴)))
118117eqrdv 2619 1 (𝜑 → (𝑃(ball‘𝐷)𝐴) = X𝑥𝐼 ((𝑃𝑥)(ball‘𝐸)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  cun 3553  wss 3555  c0 3891  {csn 4148   class class class wbr 4613  cmpt 4673   Or wor 4994   × cxp 5072  ran crn 5075  cres 5076   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  Xcixp 7852  Fincfn 7899  supcsup 8290  0cc0 9880  *cxr 10017   < clt 10018  cle 10019  Basecbs 15781  distcds 15871  Xscprds 16027  ∞Metcxmt 19650  ballcbl 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-prds 16029  df-psmet 19657  df-xmet 19658  df-bl 19660
This theorem is referenced by:  prdsxmslem2  22244  prdstotbnd  33222  prdsbnd2  33223
  Copyright terms: Public domain W3C validator