Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Structured version   Visualization version   GIF version

Theorem prdsbnd 33923
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdsbnd.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
Assertion
Ref Expression
prdsbnd (𝜑𝐷 ∈ (Bnd‘𝐵))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑆   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbnd
Dummy variables 𝑧 𝑓 𝑔 𝑘 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
2 eqid 2760 . . . 4 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
3 prdsbnd.v . . . 4 𝑉 = (Base‘(𝑅𝑥))
4 prdsbnd.e . . . 4 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
5 eqid 2760 . . . 4 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
6 prdsbnd.s . . . 4 (𝜑𝑆𝑊)
7 prdsbnd.i . . . 4 (𝜑𝐼 ∈ Fin)
8 fvexd 6365 . . . 4 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
9 prdsbnd.m . . . . 5 ((𝜑𝑥𝐼) → 𝐸 ∈ (Bnd‘𝑉))
10 bndmet 33911 . . . . 5 (𝐸 ∈ (Bnd‘𝑉) → 𝐸 ∈ (Met‘𝑉))
119, 10syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsmet 22396 . . 3 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
13 prdsbnd.d . . . 4 𝐷 = (dist‘𝑌)
14 prdsbnd.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
15 prdsbnd.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
16 dffn5 6404 . . . . . . . 8 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1715, 16sylib 208 . . . . . . 7 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
1817oveq2d 6830 . . . . . 6 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
1914, 18syl5eq 2806 . . . . 5 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2019fveq2d 6357 . . . 4 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2113, 20syl5eq 2806 . . 3 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
22 prdsbnd.b . . . . 5 𝐵 = (Base‘𝑌)
2319fveq2d 6357 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2422, 23syl5eq 2806 . . . 4 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2524fveq2d 6357 . . 3 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
2612, 21, 253eltr4d 2854 . 2 (𝜑𝐷 ∈ (Met‘𝐵))
27 isbnd3 33914 . . . . . . 7 (𝐸 ∈ (Bnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)))
2827simprbi 483 . . . . . 6 (𝐸 ∈ (Bnd‘𝑉) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
299, 28syl 17 . . . . 5 ((𝜑𝑥𝐼) → ∃𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
3029ralrimiva 3104 . . . 4 (𝜑 → ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤))
31 oveq2 6822 . . . . . 6 (𝑤 = (𝑘𝑥) → (0[,]𝑤) = (0[,](𝑘𝑥)))
3231feq3d 6193 . . . . 5 (𝑤 = (𝑘𝑥) → (𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤) ↔ 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
3332ac6sfi 8371 . . . 4 ((𝐼 ∈ Fin ∧ ∀𝑥𝐼𝑤 ∈ ℝ 𝐸:(𝑉 × 𝑉)⟶(0[,]𝑤)) → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
347, 30, 33syl2anc 696 . . 3 (𝜑 → ∃𝑘(𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥))))
35 frn 6214 . . . . . . . 8 (𝑘:𝐼⟶ℝ → ran 𝑘 ⊆ ℝ)
3635adantl 473 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ⊆ ℝ)
37 0red 10253 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3837snssd 4485 . . . . . . . 8 (𝜑 → {0} ⊆ ℝ)
3938adantr 472 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → {0} ⊆ ℝ)
4036, 39unssd 3932 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
41 ffn 6206 . . . . . . . . . 10 (𝑘:𝐼⟶ℝ → 𝑘 Fn 𝐼)
42 dffn4 6283 . . . . . . . . . 10 (𝑘 Fn 𝐼𝑘:𝐼onto→ran 𝑘)
4341, 42sylib 208 . . . . . . . . 9 (𝑘:𝐼⟶ℝ → 𝑘:𝐼onto→ran 𝑘)
44 fofi 8419 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑘:𝐼onto→ran 𝑘) → ran 𝑘 ∈ Fin)
457, 43, 44syl2an 495 . . . . . . . 8 ((𝜑𝑘:𝐼⟶ℝ) → ran 𝑘 ∈ Fin)
46 snfi 8205 . . . . . . . 8 {0} ∈ Fin
47 unfi 8394 . . . . . . . 8 ((ran 𝑘 ∈ Fin ∧ {0} ∈ Fin) → (ran 𝑘 ∪ {0}) ∈ Fin)
4845, 46, 47sylancl 697 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ∈ Fin)
49 ssun2 3920 . . . . . . . . 9 {0} ⊆ (ran 𝑘 ∪ {0})
50 c0ex 10246 . . . . . . . . . 10 0 ∈ V
5150snid 4353 . . . . . . . . 9 0 ∈ {0}
5249, 51sselii 3741 . . . . . . . 8 0 ∈ (ran 𝑘 ∪ {0})
53 ne0i 4064 . . . . . . . 8 (0 ∈ (ran 𝑘 ∪ {0}) → (ran 𝑘 ∪ {0}) ≠ ∅)
5452, 53mp1i 13 . . . . . . 7 ((𝜑𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ≠ ∅)
55 ltso 10330 . . . . . . . 8 < Or ℝ
56 fisupcl 8542 . . . . . . . 8 (( < Or ℝ ∧ ((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ)) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5755, 56mpan 708 . . . . . . 7 (((ran 𝑘 ∪ {0}) ∈ Fin ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ (ran 𝑘 ∪ {0}) ⊆ ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5848, 54, 40, 57syl3anc 1477 . . . . . 6 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ (ran 𝑘 ∪ {0}))
5940, 58sseldd 3745 . . . . 5 ((𝜑𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
6059adantrr 755 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
61 metf 22356 . . . . . . 7 (𝐷 ∈ (Met‘𝐵) → 𝐷:(𝐵 × 𝐵)⟶ℝ)
62 ffn 6206 . . . . . . 7 (𝐷:(𝐵 × 𝐵)⟶ℝ → 𝐷 Fn (𝐵 × 𝐵))
6326, 61, 623syl 18 . . . . . 6 (𝜑𝐷 Fn (𝐵 × 𝐵))
6463adantr 472 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 Fn (𝐵 × 𝐵))
6526ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷 ∈ (Met‘𝐵))
66 simprl 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
6766adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑓𝐵)
68 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
6968adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑔𝐵)
70 metcl 22358 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → (𝑓𝐷𝑔) ∈ ℝ)
7165, 67, 69, 70syl3anc 1477 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ ℝ)
72 metge0 22371 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑓𝐵𝑔𝐵) → 0 ≤ (𝑓𝐷𝑔))
7365, 67, 69, 72syl3anc 1477 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ (𝑓𝐷𝑔))
7421oveqdr 6838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔))
756adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
767adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
77 fvexd 6365 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
7877ralrimiva 3104 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
7924adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8066, 79eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
8168, 79eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
821, 2, 75, 76, 78, 80, 81, 3, 4, 5prdsdsval3 16367 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8374, 82eqtrd 2794 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8483adantr 472 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
8511adantlr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
861, 2, 75, 76, 78, 3, 80prdsbascl 16365 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
8786r19.21bi 3070 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ 𝑉)
881, 2, 75, 76, 78, 3, 81prdsbascl 16365 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
8988r19.21bi 3070 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ 𝑉)
90 metcl 22358 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9185, 87, 89, 90syl3anc 1477 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
9291ad2ant2r 800 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
93 ffvelrn 6521 . . . . . . . . . . . . . . . . 17 ((𝑘:𝐼⟶ℝ ∧ 𝑥𝐼) → (𝑘𝑥) ∈ ℝ)
9493ad2ant2lr 801 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ℝ)
9559adantlr 753 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
9695adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
97 simprr 813 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))
9887ad2ant2r 800 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝑥) ∈ 𝑉)
9989ad2ant2r 800 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑔𝑥) ∈ 𝑉)
10097, 98, 99fovrnd 6972 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)))
101 0re 10252 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
102 elicc2 12451 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ (𝑘𝑥) ∈ ℝ) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
103101, 94, 102sylancr 698 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ (0[,](𝑘𝑥)) ↔ (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))))
104100, 103mpbid 222 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑓𝑥)𝐸(𝑔𝑥)) ∧ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥)))
105104simp3d 1139 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ (𝑘𝑥))
10640adantlr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
107106adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
10852, 53mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
109 fimaxre2 11181 . . . . . . . . . . . . . . . . . . . 20 (((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
11040, 48, 109syl2anc 696 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
111110adantlr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
112111adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
113 ssun1 3919 . . . . . . . . . . . . . . . . . 18 ran 𝑘 ⊆ (ran 𝑘 ∪ {0})
11441ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑘 Fn 𝐼)
115 simprl 811 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝑥𝐼)
116 fnfvelrn 6520 . . . . . . . . . . . . . . . . . . 19 ((𝑘 Fn 𝐼𝑥𝐼) → (𝑘𝑥) ∈ ran 𝑘)
117114, 115, 116syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ ran 𝑘)
118113, 117sseldi 3742 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ∈ (ran 𝑘 ∪ {0}))
119 suprub 11196 . . . . . . . . . . . . . . . . 17 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ (𝑘𝑥) ∈ (ran 𝑘 ∪ {0})) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
120107, 108, 112, 118, 119syl31anc 1480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑘𝑥) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
12192, 94, 96, 105, 120letrd 10406 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ (𝑥𝐼𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
122121expr 644 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) ∧ 𝑥𝐼) → (𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
123122ralimdva 3100 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑘:𝐼⟶ℝ) → (∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
124123impr 650 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
125 ovex 6842 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
126125rgenw 3062 . . . . . . . . . . . . 13 𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V
127 eqid 2760 . . . . . . . . . . . . . 14 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
128 breq1 4807 . . . . . . . . . . . . . 14 (𝑤 = ((𝑓𝑥)𝐸(𝑔𝑥)) → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
129127, 128ralrnmpt 6532 . . . . . . . . . . . . 13 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ V → (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
130126, 129ax-mp 5 . . . . . . . . . . . 12 (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
131124, 130sylibr 224 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
13240ad2ant2r 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ⊆ ℝ)
13352, 53mp1i 13 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran 𝑘 ∪ {0}) ≠ ∅)
134110ad2ant2r 800 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧)
13552a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ∈ (ran 𝑘 ∪ {0}))
136 suprub 11196 . . . . . . . . . . . . . 14 ((((ran 𝑘 ∪ {0}) ⊆ ℝ ∧ (ran 𝑘 ∪ {0}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (ran 𝑘 ∪ {0})𝑤𝑧) ∧ 0 ∈ (ran 𝑘 ∪ {0})) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
137132, 133, 134, 135, 136syl31anc 1480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
138 elsni 4338 . . . . . . . . . . . . . 14 (𝑤 ∈ {0} → 𝑤 = 0)
139138breq1d 4814 . . . . . . . . . . . . 13 (𝑤 ∈ {0} → (𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ 0 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
140137, 139syl5ibrcom 237 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑤 ∈ {0} → 𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
141140ralrimiv 3103 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
142 ralunb 3937 . . . . . . . . . . 11 (∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ (∀𝑤 ∈ ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∧ ∀𝑤 ∈ {0}𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
143131, 141, 142sylanbrc 701 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
14491, 127fmptd 6549 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
145 frn 6214 . . . . . . . . . . . . . . 15 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
146144, 145syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
147 0red 10253 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
148147snssd 4485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
149146, 148unssd 3932 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
150 ressxr 10295 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
151149, 150syl6ss 3756 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
152151adantr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
15360adantlr 753 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ)
154153rexrd 10301 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*)
155 supxrleub 12369 . . . . . . . . . . 11 (((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ* ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ*) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
156152, 154, 155syl2anc 696 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ) ↔ ∀𝑤 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})𝑤 ≤ sup((ran 𝑘 ∪ {0}), ℝ, < )))
157143, 156mpbird 247 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
15884, 157eqbrtrd 4826 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))
159 elicc2 12451 . . . . . . . . 9 ((0 ∈ ℝ ∧ sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
160101, 153, 159sylancr 698 . . . . . . . 8 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ((𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ ((𝑓𝐷𝑔) ∈ ℝ ∧ 0 ≤ (𝑓𝐷𝑔) ∧ (𝑓𝐷𝑔) ≤ sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16171, 73, 158, 160mpbir3and 1428 . . . . . . 7 (((𝜑 ∧ (𝑓𝐵𝑔𝐵)) ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
162161an32s 881 . . . . . 6 (((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
163162ralrimivva 3109 . . . . 5 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
164 ffnov 6930 . . . . 5 (𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )) ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
16564, 163, 164sylanbrc 701 . . . 4 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
166 oveq2 6822 . . . . . 6 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (0[,]𝑚) = (0[,]sup((ran 𝑘 ∪ {0}), ℝ, < )))
167166feq3d 6193 . . . . 5 (𝑚 = sup((ran 𝑘 ∪ {0}), ℝ, < ) → (𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚) ↔ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))))
168167rspcev 3449 . . . 4 ((sup((ran 𝑘 ∪ {0}), ℝ, < ) ∈ ℝ ∧ 𝐷:(𝐵 × 𝐵)⟶(0[,]sup((ran 𝑘 ∪ {0}), ℝ, < ))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
16960, 165, 168syl2anc 696 . . 3 ((𝜑 ∧ (𝑘:𝐼⟶ℝ ∧ ∀𝑥𝐼 𝐸:(𝑉 × 𝑉)⟶(0[,](𝑘𝑥)))) → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
17034, 169exlimddv 2012 . 2 (𝜑 → ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚))
171 isbnd3 33914 . 2 (𝐷 ∈ (Bnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∃𝑚 ∈ ℝ 𝐷:(𝐵 × 𝐵)⟶(0[,]𝑚)))
17226, 170, 171sylanbrc 701 1 (𝜑𝐷 ∈ (Bnd‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  cun 3713  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cmpt 4881   Or wor 5186   × cxp 5264  ran crn 5267  cres 5268   Fn wfn 6044  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  Fincfn 8123  supcsup 8513  cr 10147  0cc0 10148  *cxr 10285   < clt 10286  cle 10287  [,]cicc 12391  Basecbs 16079  distcds 16172  Xscprds 16328  Metcme 19954  Bndcbnd 33897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-ec 7915  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-icc 12395  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-prds 16330  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-bnd 33909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator