MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdscrngd Structured version   Visualization version   GIF version

Theorem prdscrngd 19292
Description: A product of commutative rings is a commutative ring. Since the resulting ring will have zero divisors in all nontrivial cases, this cannot be strengthened much further. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdscrngd.y 𝑌 = (𝑆Xs𝑅)
prdscrngd.i (𝜑𝐼𝑊)
prdscrngd.s (𝜑𝑆𝑉)
prdscrngd.r (𝜑𝑅:𝐼⟶CRing)
Assertion
Ref Expression
prdscrngd (𝜑𝑌 ∈ CRing)

Proof of Theorem prdscrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdscrngd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdscrngd.i . . 3 (𝜑𝐼𝑊)
3 prdscrngd.s . . 3 (𝜑𝑆𝑉)
4 prdscrngd.r . . . 4 (𝜑𝑅:𝐼⟶CRing)
5 crngring 19237 . . . . 5 (𝑥 ∈ CRing → 𝑥 ∈ Ring)
65ssriv 3968 . . . 4 CRing ⊆ Ring
7 fss 6520 . . . 4 ((𝑅:𝐼⟶CRing ∧ CRing ⊆ Ring) → 𝑅:𝐼⟶Ring)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Ring)
91, 2, 3, 8prdsringd 19291 . 2 (𝜑𝑌 ∈ Ring)
10 eqid 2818 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 fnmgp 19170 . . . . . . 7 mulGrp Fn V
12 ssv 3988 . . . . . . 7 CRing ⊆ V
13 fnssres 6463 . . . . . . 7 ((mulGrp Fn V ∧ CRing ⊆ V) → (mulGrp ↾ CRing) Fn CRing)
1411, 12, 13mp2an 688 . . . . . 6 (mulGrp ↾ CRing) Fn CRing
15 fvres 6682 . . . . . . . 8 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) = (mulGrp‘𝑥))
16 eqid 2818 . . . . . . . . 9 (mulGrp‘𝑥) = (mulGrp‘𝑥)
1716crngmgp 19234 . . . . . . . 8 (𝑥 ∈ CRing → (mulGrp‘𝑥) ∈ CMnd)
1815, 17eqeltrd 2910 . . . . . . 7 (𝑥 ∈ CRing → ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd)
1918rgen 3145 . . . . . 6 𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd
20 ffnfv 6874 . . . . . 6 ((mulGrp ↾ CRing):CRing⟶CMnd ↔ ((mulGrp ↾ CRing) Fn CRing ∧ ∀𝑥 ∈ CRing ((mulGrp ↾ CRing)‘𝑥) ∈ CMnd))
2114, 19, 20mpbir2an 707 . . . . 5 (mulGrp ↾ CRing):CRing⟶CMnd
22 fco2 6526 . . . . 5 (((mulGrp ↾ CRing):CRing⟶CMnd ∧ 𝑅:𝐼⟶CRing) → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2321, 4, 22sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶CMnd)
2410, 2, 3, 23prdscmnd 18910 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd)
25 eqidd 2819 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
26 eqid 2818 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
274ffnd 6508 . . . . . 6 (𝜑𝑅 Fn 𝐼)
281, 26, 10, 2, 3, 27prdsmgp 19289 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
2928simpld 495 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
3028simprd 496 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
3130oveqdr 7173 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
3225, 29, 31cmnpropd 18845 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ CMnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ CMnd))
3324, 32mpbird 258 . 2 (𝜑 → (mulGrp‘𝑌) ∈ CMnd)
3426iscrng 19233 . 2 (𝑌 ∈ CRing ↔ (𝑌 ∈ Ring ∧ (mulGrp‘𝑌) ∈ CMnd))
359, 33, 34sylanbrc 583 1 (𝜑𝑌 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  wss 3933  cres 5550  ccom 5552   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Xscprds 16707  CMndccmn 18835  mulGrpcmgp 19168  Ringcrg 19226  CRingccrg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-cmn 18837  df-mgp 19169  df-ring 19228  df-cring 19229
This theorem is referenced by:  pwscrng  19296
  Copyright terms: Public domain W3C validator