MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsinvlem Structured version   Visualization version   GIF version

Theorem prdsinvlem 18202
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y 𝑌 = (𝑆Xs𝑅)
prdsinvlem.b 𝐵 = (Base‘𝑌)
prdsinvlem.p + = (+g𝑌)
prdsinvlem.s (𝜑𝑆𝑉)
prdsinvlem.i (𝜑𝐼𝑊)
prdsinvlem.r (𝜑𝑅:𝐼⟶Grp)
prdsinvlem.f (𝜑𝐹𝐵)
prdsinvlem.z 0 = (0g𝑅)
prdsinvlem.n 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
Assertion
Ref Expression
prdsinvlem (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑉   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   + (𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem prdsinvlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3 𝑁 = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦)))
2 prdsinvlem.r . . . . . . 7 (𝜑𝑅:𝐼⟶Grp)
32ffvelrnda 6845 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Grp)
4 prdsinvlem.y . . . . . . 7 𝑌 = (𝑆Xs𝑅)
5 prdsinvlem.b . . . . . . 7 𝐵 = (Base‘𝑌)
6 prdsinvlem.s . . . . . . . 8 (𝜑𝑆𝑉)
76adantr 483 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑆𝑉)
8 prdsinvlem.i . . . . . . . 8 (𝜑𝐼𝑊)
98adantr 483 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐼𝑊)
102ffnd 6509 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
1110adantr 483 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑅 Fn 𝐼)
12 prdsinvlem.f . . . . . . . 8 (𝜑𝐹𝐵)
1312adantr 483 . . . . . . 7 ((𝜑𝑦𝐼) → 𝐹𝐵)
14 simpr 487 . . . . . . 7 ((𝜑𝑦𝐼) → 𝑦𝐼)
154, 5, 7, 9, 11, 13, 14prdsbasprj 16739 . . . . . 6 ((𝜑𝑦𝐼) → (𝐹𝑦) ∈ (Base‘(𝑅𝑦)))
16 eqid 2821 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
17 eqid 2821 . . . . . . 7 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
1816, 17grpinvcl 18145 . . . . . 6 (((𝑅𝑦) ∈ Grp ∧ (𝐹𝑦) ∈ (Base‘(𝑅𝑦))) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
193, 15, 18syl2anc 586 . . . . 5 ((𝜑𝑦𝐼) → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
2019ralrimiva 3182 . . . 4 (𝜑 → ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦)))
214, 5, 6, 8, 10prdsbasmpt 16737 . . . 4 (𝜑 → ((𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 ((invg‘(𝑅𝑦))‘(𝐹𝑦)) ∈ (Base‘(𝑅𝑦))))
2220, 21mpbird 259 . . 3 (𝜑 → (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝐹𝑦))) ∈ 𝐵)
231, 22eqeltrid 2917 . 2 (𝜑𝑁𝐵)
242ffvelrnda 6845 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Grp)
256adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑉)
268adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑊)
2710adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
2812adantr 483 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐹𝐵)
29 simpr 487 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
304, 5, 25, 26, 27, 28, 29prdsbasprj 16739 . . . . . 6 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
31 eqid 2821 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
32 eqid 2821 . . . . . . 7 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
33 eqid 2821 . . . . . . 7 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
34 eqid 2821 . . . . . . 7 (invg‘(𝑅𝑥)) = (invg‘(𝑅𝑥))
3531, 32, 33, 34grplinv 18146 . . . . . 6 (((𝑅𝑥) ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥))) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
3624, 30, 35syl2anc 586 . . . . 5 ((𝜑𝑥𝐼) → (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)) = (0g‘(𝑅𝑥)))
37 2fveq3 6669 . . . . . . . . 9 (𝑦 = 𝑥 → (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑥)))
38 fveq2 6664 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3937, 38fveq12d 6671 . . . . . . . 8 (𝑦 = 𝑥 → ((invg‘(𝑅𝑦))‘(𝐹𝑦)) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
40 fvex 6677 . . . . . . . 8 ((invg‘(𝑅𝑥))‘(𝐹𝑥)) ∈ V
4139, 1, 40fvmpt 6762 . . . . . . 7 (𝑥𝐼 → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4241adantl 484 . . . . . 6 ((𝜑𝑥𝐼) → (𝑁𝑥) = ((invg‘(𝑅𝑥))‘(𝐹𝑥)))
4342oveq1d 7165 . . . . 5 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = (((invg‘(𝑅𝑥))‘(𝐹𝑥))(+g‘(𝑅𝑥))(𝐹𝑥)))
44 prdsinvlem.z . . . . . . 7 0 = (0g𝑅)
4544fveq1i 6665 . . . . . 6 ( 0𝑥) = ((0g𝑅)‘𝑥)
46 fvco2 6752 . . . . . . 7 ((𝑅 Fn 𝐼𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4710, 46sylan 582 . . . . . 6 ((𝜑𝑥𝐼) → ((0g𝑅)‘𝑥) = (0g‘(𝑅𝑥)))
4845, 47syl5eq 2868 . . . . 5 ((𝜑𝑥𝐼) → ( 0𝑥) = (0g‘(𝑅𝑥)))
4936, 43, 483eqtr4d 2866 . . . 4 ((𝜑𝑥𝐼) → ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥)) = ( 0𝑥))
5049mpteq2dva 5153 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))) = (𝑥𝐼 ↦ ( 0𝑥)))
51 prdsinvlem.p . . . 4 + = (+g𝑌)
524, 5, 6, 8, 10, 23, 12, 51prdsplusgval 16740 . . 3 (𝜑 → (𝑁 + 𝐹) = (𝑥𝐼 ↦ ((𝑁𝑥)(+g‘(𝑅𝑥))(𝐹𝑥))))
53 fn0g 17867 . . . . . 6 0g Fn V
54 ssv 3990 . . . . . . 7 ran 𝑅 ⊆ V
5554a1i 11 . . . . . 6 (𝜑 → ran 𝑅 ⊆ V)
56 fnco 6459 . . . . . 6 ((0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (0g𝑅) Fn 𝐼)
5753, 10, 55, 56mp3an2i 1462 . . . . 5 (𝜑 → (0g𝑅) Fn 𝐼)
5844fneq1i 6444 . . . . 5 ( 0 Fn 𝐼 ↔ (0g𝑅) Fn 𝐼)
5957, 58sylibr 236 . . . 4 (𝜑0 Fn 𝐼)
60 dffn5 6718 . . . 4 ( 0 Fn 𝐼0 = (𝑥𝐼 ↦ ( 0𝑥)))
6159, 60sylib 220 . . 3 (𝜑0 = (𝑥𝐼 ↦ ( 0𝑥)))
6250, 52, 613eqtr4d 2866 . 2 (𝜑 → (𝑁 + 𝐹) = 0 )
6323, 62jca 514 1 (𝜑 → (𝑁𝐵 ∧ (𝑁 + 𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  wss 3935  cmpt 5138  ran crn 5550  ccom 5553   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Xscprds 16713  Grpcgrp 18097  invgcminusg 18098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101
This theorem is referenced by:  prdsgrpd  18203  prdsinvgd  18204
  Copyright terms: Public domain W3C validator