Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulrcl Structured version   Visualization version   GIF version

Theorem prdsmulrcl 18657
 Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmulrcl.y 𝑌 = (𝑆Xs𝑅)
prdsmulrcl.b 𝐵 = (Base‘𝑌)
prdsmulrcl.t · = (.r𝑌)
prdsmulrcl.s (𝜑𝑆𝑉)
prdsmulrcl.i (𝜑𝐼𝑊)
prdsmulrcl.r (𝜑𝑅:𝐼⟶Ring)
prdsmulrcl.f (𝜑𝐹𝐵)
prdsmulrcl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
prdsmulrcl (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)

Proof of Theorem prdsmulrcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsmulrcl.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsmulrcl.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmulrcl.s . . 3 (𝜑𝑆𝑉)
4 prdsmulrcl.i . . 3 (𝜑𝐼𝑊)
5 prdsmulrcl.r . . . 4 (𝜑𝑅:𝐼⟶Ring)
6 ffn 6083 . . . 4 (𝑅:𝐼⟶Ring → 𝑅 Fn 𝐼)
75, 6syl 17 . . 3 (𝜑𝑅 Fn 𝐼)
8 prdsmulrcl.f . . 3 (𝜑𝐹𝐵)
9 prdsmulrcl.g . . 3 (𝜑𝐺𝐵)
10 prdsmulrcl.t . . 3 · = (.r𝑌)
111, 2, 3, 4, 7, 8, 9, 10prdsmulrval 16182 . 2 (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
125ffvelrnda 6399 . . . . 5 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Ring)
133adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆𝑉)
144adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑊)
157adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
168adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹𝐵)
17 simpr 476 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥𝐼)
181, 2, 13, 14, 15, 16, 17prdsbasprj 16179 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
199adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺𝐵)
201, 2, 13, 14, 15, 19, 17prdsbasprj 16179 . . . . 5 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ (Base‘(𝑅𝑥)))
21 eqid 2651 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
22 eqid 2651 . . . . . 6 (.r‘(𝑅𝑥)) = (.r‘(𝑅𝑥))
2321, 22ringcl 18607 . . . . 5 (((𝑅𝑥) ∈ Ring ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥)) ∧ (𝐺𝑥) ∈ (Base‘(𝑅𝑥))) → ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2412, 18, 20, 23syl3anc 1366 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2524ralrimiva 2995 . . 3 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
261, 2, 3, 4, 7prdsbasmpt 16177 . . 3 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵 ↔ ∀𝑥𝐼 ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥))))
2725, 26mpbird 247 . 2 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵)
2811, 27eqeltrd 2730 1 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ↦ cmpt 4762   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  .rcmulr 15989  Xscprds 16153  Ringcrg 18593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-prds 16155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mgp 18536  df-ring 18595 This theorem is referenced by:  prdsringd  18658
 Copyright terms: Public domain W3C validator