MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmet Structured version   Visualization version   GIF version

Theorem prdsxmet 22087
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 22086. (Contributed by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
prdsdsf.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsdsf.b 𝐵 = (Base‘𝑌)
prdsdsf.v 𝑉 = (Base‘𝑅)
prdsdsf.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsdsf.d 𝐷 = (dist‘𝑌)
prdsdsf.s (𝜑𝑆𝑊)
prdsdsf.i (𝜑𝐼𝑋)
prdsdsf.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsdsf.m ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
Assertion
Ref Expression
prdsxmet (𝜑𝐷 ∈ (∞Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsxmet
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsdsf.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 nfcv 2761 . . . . 5 𝑦𝑅
3 nfcsb1v 3531 . . . . 5 𝑥𝑦 / 𝑥𝑅
4 csbeq1a 3524 . . . . 5 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
52, 3, 4cbvmpt 4711 . . . 4 (𝑥𝐼𝑅) = (𝑦𝐼𝑦 / 𝑥𝑅)
65oveq2i 6618 . . 3 (𝑆Xs(𝑥𝐼𝑅)) = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
71, 6eqtri 2643 . 2 𝑌 = (𝑆Xs(𝑦𝐼𝑦 / 𝑥𝑅))
8 prdsdsf.b . 2 𝐵 = (Base‘𝑌)
9 eqid 2621 . 2 (Base‘𝑦 / 𝑥𝑅) = (Base‘𝑦 / 𝑥𝑅)
10 eqid 2621 . 2 ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
11 prdsdsf.d . 2 𝐷 = (dist‘𝑌)
12 prdsdsf.s . 2 (𝜑𝑆𝑊)
13 prdsdsf.i . 2 (𝜑𝐼𝑋)
14 prdsdsf.r . . . . 5 ((𝜑𝑥𝐼) → 𝑅𝑍)
15 elex 3198 . . . . 5 (𝑅𝑍𝑅 ∈ V)
1614, 15syl 17 . . . 4 ((𝜑𝑥𝐼) → 𝑅 ∈ V)
1716ralrimiva 2960 . . 3 (𝜑 → ∀𝑥𝐼 𝑅 ∈ V)
183nfel1 2775 . . . 4 𝑥𝑦 / 𝑥𝑅 ∈ V
194eleq1d 2683 . . . 4 (𝑥 = 𝑦 → (𝑅 ∈ V ↔ 𝑦 / 𝑥𝑅 ∈ V))
2018, 19rspc 3289 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝑅 ∈ V → 𝑦 / 𝑥𝑅 ∈ V))
2117, 20mpan9 486 . 2 ((𝜑𝑦𝐼) → 𝑦 / 𝑥𝑅 ∈ V)
22 prdsdsf.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
2322ralrimiva 2960 . . 3 (𝜑 → ∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉))
24 nfcv 2761 . . . . . . 7 𝑥dist
2524, 3nffv 6157 . . . . . 6 𝑥(dist‘𝑦 / 𝑥𝑅)
26 nfcv 2761 . . . . . . . 8 𝑥Base
2726, 3nffv 6157 . . . . . . 7 𝑥(Base‘𝑦 / 𝑥𝑅)
2827, 27nfxp 5104 . . . . . 6 𝑥((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))
2925, 28nfres 5360 . . . . 5 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
30 nfcv 2761 . . . . . 6 𝑥∞Met
3130, 27nffv 6157 . . . . 5 𝑥(∞Met‘(Base‘𝑦 / 𝑥𝑅))
3229, 31nfel 2773 . . . 4 𝑥((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))
33 prdsdsf.e . . . . . 6 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
344fveq2d 6154 . . . . . . 7 (𝑥 = 𝑦 → (dist‘𝑅) = (dist‘𝑦 / 𝑥𝑅))
35 prdsdsf.v . . . . . . . . 9 𝑉 = (Base‘𝑅)
364fveq2d 6154 . . . . . . . . 9 (𝑥 = 𝑦 → (Base‘𝑅) = (Base‘𝑦 / 𝑥𝑅))
3735, 36syl5eq 2667 . . . . . . . 8 (𝑥 = 𝑦𝑉 = (Base‘𝑦 / 𝑥𝑅))
3837sqxpeqd 5103 . . . . . . 7 (𝑥 = 𝑦 → (𝑉 × 𝑉) = ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅)))
3934, 38reseq12d 5359 . . . . . 6 (𝑥 = 𝑦 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
4033, 39syl5eq 2667 . . . . 5 (𝑥 = 𝑦𝐸 = ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))))
4137fveq2d 6154 . . . . 5 (𝑥 = 𝑦 → (∞Met‘𝑉) = (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
4240, 41eleq12d 2692 . . . 4 (𝑥 = 𝑦 → (𝐸 ∈ (∞Met‘𝑉) ↔ ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4332, 42rspc 3289 . . 3 (𝑦𝐼 → (∀𝑥𝐼 𝐸 ∈ (∞Met‘𝑉) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅))))
4423, 43mpan9 486 . 2 ((𝜑𝑦𝐼) → ((dist‘𝑦 / 𝑥𝑅) ↾ ((Base‘𝑦 / 𝑥𝑅) × (Base‘𝑦 / 𝑥𝑅))) ∈ (∞Met‘(Base‘𝑦 / 𝑥𝑅)))
457, 8, 9, 10, 11, 12, 13, 21, 44prdsxmetlem 22086 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  csb 3515  cmpt 4675   × cxp 5074  cres 5078  cfv 5849  (class class class)co 6607  Basecbs 15784  distcds 15874  Xscprds 16030  ∞Metcxmt 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-icc 12127  df-fz 12272  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-plusg 15878  df-mulr 15879  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-hom 15890  df-cco 15891  df-prds 16032  df-xmet 19661
This theorem is referenced by:  prdsmet  22088  xpsxmetlem  22097  prdsbl  22209  prdsxmslem1  22246
  Copyright terms: Public domain W3C validator