Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxms Structured version   Visualization version   GIF version

Theorem prdsxms 22245
 Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
Assertion
Ref Expression
prdsxms ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp)

Proof of Theorem prdsxms
Dummy variables 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsxms.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 simp1 1059 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑆𝑊)
3 simp2 1060 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝐼 ∈ Fin)
4 eqid 2621 . . . 4 (dist‘𝑌) = (dist‘𝑌)
5 eqid 2621 . . . 4 (Base‘𝑌) = (Base‘𝑌)
6 simp3 1061 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑅:𝐼⟶∞MetSp)
71, 2, 3, 4, 5, 6prdsxmslem1 22243 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)))
8 ssid 3603 . . 3 (Base‘𝑌) ⊆ (Base‘𝑌)
9 xmetres2 22076 . . 3 (((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)))
107, 8, 9sylancl 693 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)))
11 eqid 2621 . . . 4 (TopOpen‘𝑌) = (TopOpen‘𝑌)
12 eqid 2621 . . . 4 (Base‘(𝑅𝑘)) = (Base‘(𝑅𝑘))
13 eqid 2621 . . . 4 ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) = ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘))))
14 eqid 2621 . . . 4 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
15 eqid 2621 . . . 4 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑔𝑘) ∈ ((TopOpen ∘ 𝑅)‘𝑘) ∧ ∃𝑧 ∈ Fin ∀𝑘 ∈ (𝐼𝑧)(𝑔𝑘) = ((TopOpen ∘ 𝑅)‘𝑘)) ∧ 𝑥 = X𝑘𝐼 (𝑔𝑘))}
161, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15prdsxmslem2 22244 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘(dist‘𝑌)))
17 xmetf 22044 . . . . 5 ((dist‘𝑌) ∈ (∞Met‘(Base‘𝑌)) → (dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ*)
18 ffn 6002 . . . . 5 ((dist‘𝑌):((Base‘𝑌) × (Base‘𝑌))⟶ℝ* → (dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)))
19 fnresdm 5958 . . . . 5 ((dist‘𝑌) Fn ((Base‘𝑌) × (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌))
207, 17, 18, 194syl 19 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = (dist‘𝑌))
2120fveq2d 6152 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))) = (MetOpen‘(dist‘𝑌)))
2216, 21eqtr4d 2658 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))))
23 eqid 2621 . . 3 ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))
2411, 5, 23isxms2 22163 . 2 (𝑌 ∈ ∞MetSp ↔ (((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (∞Met‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) = (MetOpen‘((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))))))
2510, 22, 24sylanbrc 697 1 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1987  {cab 2607  ∀wral 2907  ∃wrex 2908   ∖ cdif 3552   ⊆ wss 3555  ∪ cuni 4402   × cxp 5072   ↾ cres 5076   ∘ ccom 5078   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  Xcixp 7852  Fincfn 7899  ℝ*cxr 10017  Basecbs 15781  distcds 15871  TopOpenctopn 16003  Xscprds 16027  ∞Metcxmt 19650  MetOpencmopn 19655  ∞MetSpcxme 22032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-topgen 16025  df-pt 16026  df-prds 16029  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035 This theorem is referenced by:  prdsms  22246  pwsxms  22247  xpsxms  22249
 Copyright terms: Public domain W3C validator