MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpo Structured version   Visualization version   GIF version

Theorem predpo 5686
Description: Property of the precessor class for partial orderings. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
predpo ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))

Proof of Theorem predpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 predel 5685 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
2 elpredg 5682 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
32adantll 749 . . . . . . . . . 10 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
4 potr 5037 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ (𝑧𝐴𝑌𝐴𝑋𝐴)) → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋))
543exp2 1283 . . . . . . . . . . . . . . 15 (𝑅 Po 𝐴 → (𝑧𝐴 → (𝑌𝐴 → (𝑋𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))))
65com24 95 . . . . . . . . . . . . . 14 (𝑅 Po 𝐴 → (𝑋𝐴 → (𝑌𝐴 → (𝑧𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))))
76imp31 448 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑧𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))
87com13 88 . . . . . . . . . . . 12 ((𝑧𝑅𝑌𝑌𝑅𝑋) → (𝑧𝐴 → (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → 𝑧𝑅𝑋)))
98ex 450 . . . . . . . . . . 11 (𝑧𝑅𝑌 → (𝑌𝑅𝑋 → (𝑧𝐴 → (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → 𝑧𝑅𝑋))))
109com14 96 . . . . . . . . . 10 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌𝑅𝑋 → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋))))
113, 10sylbid 230 . . . . . . . . 9 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋))))
1211ex 450 . . . . . . . 8 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌𝐴 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))))
1312com23 86 . . . . . . 7 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑌𝐴 → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))))
14133imp 1254 . . . . . 6 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))
1514imdistand 727 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → ((𝑧𝐴𝑧𝑅𝑌) → (𝑧𝐴𝑧𝑅𝑋)))
16 vex 3198 . . . . . . 7 𝑧 ∈ V
1716elpred 5681 . . . . . 6 (𝑌𝐴 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) ↔ (𝑧𝐴𝑧𝑅𝑌)))
18173ad2ant3 1082 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) ↔ (𝑧𝐴𝑧𝑅𝑌)))
1916elpred 5681 . . . . . . 7 (𝑋𝐴 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
2019adantl 482 . . . . . 6 ((𝑅 Po 𝐴𝑋𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
21203ad2ant1 1080 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
2215, 18, 213imtr4d 283 . . . 4 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) → 𝑧 ∈ Pred(𝑅, 𝐴, 𝑋)))
2322ssrdv 3601 . . 3 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))
24233exp 1262 . 2 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑌𝐴 → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))))
251, 24mpdi 45 1 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1988  wss 3567   class class class wbr 4644   Po wpo 5023  Predcpred 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-po 5025  df-xp 5110  df-cnv 5112  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668
This theorem is referenced by:  predso  5687  trpredpo  31709
  Copyright terms: Public domain W3C validator