MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpoirr Structured version   Visualization version   GIF version

Theorem predpoirr 6170
Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
Assertion
Ref Expression
predpoirr (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))

Proof of Theorem predpoirr
StepHypRef Expression
1 poirr 5479 . . . . 5 ((𝑅 Po 𝐴𝑋𝐴) → ¬ 𝑋𝑅𝑋)
2 elpredg 6156 . . . . . . 7 ((𝑋𝐴𝑋𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
32anidms 569 . . . . . 6 (𝑋𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
43notbid 320 . . . . 5 (𝑋𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋))
51, 4syl5ibr 248 . . . 4 (𝑋𝐴 → ((𝑅 Po 𝐴𝑋𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
65expd 418 . . 3 (𝑋𝐴 → (𝑅 Po 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))))
76pm2.43b 55 . 2 (𝑅 Po 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
8 predel 6159 . . 3 (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋𝐴)
98con3i 157 . 2 𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
107, 9pm2.61d1 182 1 (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110   class class class wbr 5058   Po wpo 5466  Predcpred 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-po 5468  df-xp 5555  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator