Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimageiingt Structured version   Visualization version   GIF version

Theorem preimageiingt 42875
Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimageiingt.x 𝑥𝜑
preimageiingt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimageiingt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimageiingt (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimageiingt
StepHypRef Expression
1 preimageiingt.x . . . 4 𝑥𝜑
2 simpllr 772 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimageiingt.c . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ)
43adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
5 nnrecre 11667 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
65adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
74, 6resubcld 11056 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ)
87rexrd 10679 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
98ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
103rexrd 10679 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
1110ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
12 preimageiingt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
1312ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
14 nnrp 12388 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
15 rpreccl 12403 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1716adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
184, 17ltsubrpd 12451 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
1918ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐶)
20 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝐶𝐵)
219, 11, 13, 19, 20xrltletrd 12542 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝐶 − (1 / 𝑛)) < 𝐵)
222, 21jca 512 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
23 rabid 3376 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ (𝑥𝐴 ∧ (𝐶 − (1 / 𝑛)) < 𝐵))
2422, 23sylibr 235 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐶𝐵) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2524ralrimiva 3179 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
26 vex 3495 . . . . . . . 8 𝑥 ∈ V
27 eliin 4915 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
2925, 28sylibr 235 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
3029ex 413 . . . . 5 ((𝜑𝑥𝐴) → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3130ex 413 . . . 4 (𝜑 → (𝑥𝐴 → (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})))
321, 31ralrimi 3213 . . 3 (𝜑 → ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
33 nfcv 2974 . . . . 5 𝑥
34 nfrab1 3382 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3533, 34nfiin 4941 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}
3635rabssf 41262 . . 3 ({𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ↔ ∀𝑥𝐴 (𝐶𝐵𝑥 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵}))
3732, 36sylibr 235 . 2 (𝜑 → {𝑥𝐴𝐶𝐵} ⊆ 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
38 nnn0 41523 . . . . 5 ℕ ≠ ∅
39 iinrab 4982 . . . . 5 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
4038, 39ax-mp 5 . . . 4 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵}
4140a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵})
428ad4ant13 747 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ∈ ℝ*)
4312ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
44 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) < 𝐵)
4542, 43, 44xrltled 12531 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶 − (1 / 𝑛)) ≤ 𝐵)
4645ex 413 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝐶 − (1 / 𝑛)) < 𝐵 → (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4746ralimdva 3174 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵 → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
4847imp 407 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵)
49 nfv 1906 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
50 nfra1 3216 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵
5149, 50nfan 1891 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵)
523ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶 ∈ ℝ)
5312adantr 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐵 ∈ ℝ*)
5451, 52, 53xrralrecnnge 41538 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → (𝐶𝐵 ↔ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) ≤ 𝐵))
5548, 54mpbird 258 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵) → 𝐶𝐵)
5655ex 413 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
5756ex 413 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵)))
581, 57ralrimi 3213 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
59 ss2rab 4044 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵𝐶𝐵))
6058, 59sylibr 235 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6141, 60eqsstrd 4002 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵} ⊆ {𝑥𝐴𝐶𝐵})
6237, 61eqssd 3981 1 (𝜑 → {𝑥𝐴𝐶𝐵} = 𝑛 ∈ ℕ {𝑥𝐴 ∣ (𝐶 − (1 / 𝑛)) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wnf 1775  wcel 2105  wne 3013  wral 3135  {crab 3139  Vcvv 3492  wss 3933  c0 4288   ciin 4911   class class class wbr 5057  (class class class)co 7145  cr 10524  1c1 10526  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13150
This theorem is referenced by:  salpreimagtge  42879
  Copyright terms: Public domain W3C validator