Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimalegt Structured version   Visualization version   GIF version

Theorem preimalegt 42988
Description: The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimalegt.x 𝑥𝜑
preimalegt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimalegt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
preimalegt (𝜑 → (𝐴 ∖ {𝑥𝐴𝐵𝐶}) = {𝑥𝐴𝐶 < 𝐵})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimalegt
StepHypRef Expression
1 preimalegt.x . 2 𝑥𝜑
2 nfcv 2980 . . 3 𝑥𝐴
3 nfrab1 3387 . . 3 𝑥{𝑥𝐴𝐵𝐶}
42, 3nfdif 4105 . 2 𝑥(𝐴 ∖ {𝑥𝐴𝐵𝐶})
5 nfrab1 3387 . 2 𝑥{𝑥𝐴𝐶 < 𝐵}
6 eldifi 4106 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → 𝑥𝐴)
76adantl 484 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝑥𝐴)
8 eldifn 4107 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → ¬ 𝑥 ∈ {𝑥𝐴𝐵𝐶})
96anim1i 616 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ∧ 𝐵𝐶) → (𝑥𝐴𝐵𝐶))
10 rabid 3381 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵𝐶} ↔ (𝑥𝐴𝐵𝐶))
119, 10sylibr 236 . . . . . . 7 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ∧ 𝐵𝐶) → 𝑥 ∈ {𝑥𝐴𝐵𝐶})
128, 11mtand 814 . . . . . 6 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → ¬ 𝐵𝐶)
1312adantl 484 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → ¬ 𝐵𝐶)
14 preimalegt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1514adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐶 ∈ ℝ*)
16 preimalegt.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
176, 16sylan2 594 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐵 ∈ ℝ*)
1815, 17xrltnled 41637 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1913, 18mpbird 259 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐶 < 𝐵)
20 rabid 3381 . . . 4 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} ↔ (𝑥𝐴𝐶 < 𝐵))
217, 19, 20sylanbrc 585 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵})
22 rabidim1 3383 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝑥𝐴)
2322adantl 484 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝑥𝐴)
24 rabidim2 41374 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝐶 < 𝐵)
2524adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐶 < 𝐵)
2614adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐶 ∈ ℝ*)
2722, 16sylan2 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐵 ∈ ℝ*)
2826, 27xrltnled 41637 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
2925, 28mpbid 234 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ 𝐵𝐶)
3029intnand 491 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ (𝑥𝐴𝐵𝐶))
3130, 10sylnibr 331 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ 𝑥 ∈ {𝑥𝐴𝐵𝐶})
3223, 31eldifd 3950 . . 3 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}))
3321, 32impbida 799 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ↔ 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}))
341, 4, 5, 33eqrd 3989 1 (𝜑 → (𝐴 ∖ {𝑥𝐴𝐵𝐶}) = {𝑥𝐴𝐶 < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wnf 1783  wcel 2113  {crab 3145  cdif 3936   class class class wbr 5069  *cxr 10677   < clt 10678  cle 10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-cnv 5566  df-le 10684
This theorem is referenced by:  salpreimalegt  42995
  Copyright terms: Public domain W3C validator