Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaleiinlt Structured version   Visualization version   GIF version

Theorem preimaleiinlt 40225
Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaleiinlt.x 𝑥𝜑
preimaleiinlt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimaleiinlt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
preimaleiinlt (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝜑,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimaleiinlt
StepHypRef Expression
1 preimaleiinlt.x . . . 4 𝑥𝜑
2 simpllr 798 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥𝐴)
3 preimaleiinlt.b . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
43ad2antrr 761 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
5 preimaleiinlt.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
65ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
76rexrd 10034 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 ∈ ℝ*)
85adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℝ)
9 nnrecre 11002 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
109adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
118, 10readdcld 10014 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1211ad4ant14 1290 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
1312rexrd 10034 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
14 simplr 791 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵𝐶)
15 nnrp 11786 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
16 rpreccl 11801 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
1817adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
198, 18ltaddrpd 11849 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
2019ad4ant14 1290 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐶 < (𝐶 + (1 / 𝑛)))
214, 7, 13, 14, 20xrlelttrd 11935 . . . . . . . . . 10 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐶 + (1 / 𝑛)))
222, 21jca 554 . . . . . . . . 9 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
23 rabid 3111 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ (𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))))
2422, 23sylibr 224 . . . . . . . 8 ((((𝜑𝑥𝐴) ∧ 𝐵𝐶) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2524ralrimiva 2965 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
26 vex 3194 . . . . . . . 8 𝑥 ∈ V
27 eliin 4496 . . . . . . . 8 (𝑥 ∈ V → (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
2826, 27ax-mp 5 . . . . . . 7 (𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑛 ∈ ℕ 𝑥 ∈ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
2925, 28sylibr 224 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵𝐶) → 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
3029ex 450 . . . . 5 ((𝜑𝑥𝐴) → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3130ex 450 . . . 4 (𝜑 → (𝑥𝐴 → (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})))
321, 31ralrimi 2956 . . 3 (𝜑 → ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
33 nfcv 2767 . . . . 5 𝑥
34 nfrab1 3116 . . . . 5 𝑥{𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3533, 34nfiin 4520 . . . 4 𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}
3635rabssf 38776 . . 3 ({𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ↔ ∀𝑥𝐴 (𝐵𝐶𝑥 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))}))
3732, 36sylibr 224 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
38 nnn0 39046 . . . . 5 ℕ ≠ ∅
3938a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
40 iinrab 4553 . . . 4 (ℕ ≠ ∅ → 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
4139, 40syl 17 . . 3 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} = {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))})
423ad2antrr 761 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
4311ad4ant13 1289 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ)
4443rexrd 10034 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐶 + (1 / 𝑛)) ∈ ℝ*)
45 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 < (𝐶 + (1 / 𝑛)))
4642, 44, 45xrltled 38937 . . . . . . . . . . 11 ((((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ≤ (𝐶 + (1 / 𝑛)))
4746ex 450 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4847ralimdva 2961 . . . . . . . . 9 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
4948imp 445 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛)))
50 nfv 1845 . . . . . . . . . 10 𝑛(𝜑𝑥𝐴)
51 nfra1 2941 . . . . . . . . . 10 𝑛𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))
5250, 51nfan 1830 . . . . . . . . 9 𝑛((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)))
533adantr 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵 ∈ ℝ*)
545ad2antrr 761 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐶 ∈ ℝ)
5552, 53, 54xrralrecnnle 39053 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → (𝐵𝐶 ↔ ∀𝑛 ∈ ℕ 𝐵 ≤ (𝐶 + (1 / 𝑛))))
5649, 55mpbird 247 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))) → 𝐵𝐶)
5756ex 450 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
5857ex 450 . . . . 5 (𝜑 → (𝑥𝐴 → (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶)))
591, 58ralrimi 2956 . . . 4 (𝜑 → ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
60 ss2rab 3662 . . . 4 ({𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶} ↔ ∀𝑥𝐴 (∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛)) → 𝐵𝐶))
6159, 60sylibr 224 . . 3 (𝜑 → {𝑥𝐴 ∣ ∀𝑛 ∈ ℕ 𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6241, 61eqsstrd 3623 . 2 (𝜑 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))} ⊆ {𝑥𝐴𝐵𝐶})
6337, 62eqssd 3605 1 (𝜑 → {𝑥𝐴𝐵𝐶} = 𝑛 ∈ ℕ {𝑥𝐴𝐵 < (𝐶 + (1 / 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wnf 1705  wcel 1992  wne 2796  wral 2912  {crab 2916  Vcvv 3191  wss 3560  c0 3896   ciin 4491   class class class wbr 4618  (class class class)co 6605  cr 9880  1c1 9882   + caddc 9884  *cxr 10018   < clt 10019  cle 10020   / cdiv 10629  cn 10965  +crp 11776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-fl 12530
This theorem is referenced by:  salpreimaltle  40229
  Copyright terms: Public domain W3C validator