MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12nebg Structured version   Visualization version   GIF version

Theorem preq12nebg 4796
Description: Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022.)
Assertion
Ref Expression
preq12nebg ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))

Proof of Theorem preq12nebg
StepHypRef Expression
1 3simpa 1144 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴𝑉𝐵𝑊))
21anim1i 616 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ((𝐴𝑉𝐵𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
32ancoms 461 . . . 4 (((𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ((𝐴𝑉𝐵𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
4 preq12bg 4787 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
53, 4syl 17 . . 3 (((𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
65ex 415 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
7 ianor 978 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V))
8 prneprprc 4794 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
98ancoms 461 . . . . . . 7 ((¬ 𝐶 ∈ V ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
10 eqneqall 3030 . . . . . . 7 ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
119, 10syl5com 31 . . . . . 6 ((¬ 𝐶 ∈ V ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
12 prneprprc 4794 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶})
1312ancoms 461 . . . . . . 7 ((¬ 𝐷 ∈ V ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → {𝐴, 𝐵} ≠ {𝐷, 𝐶})
14 prcom 4671 . . . . . . . . 9 {𝐶, 𝐷} = {𝐷, 𝐶}
1514eqeq2i 2837 . . . . . . . 8 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶})
16 eqneqall 3030 . . . . . . . 8 ({𝐴, 𝐵} = {𝐷, 𝐶} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
1715, 16sylbi 219 . . . . . . 7 ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
1813, 17syl5com 31 . . . . . 6 ((¬ 𝐷 ∈ V ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
1911, 18jaoian 953 . . . . 5 (((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
20 preq12 4674 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
21 preq12 4674 . . . . . . 7 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶})
22 prcom 4671 . . . . . . 7 {𝐷, 𝐶} = {𝐶, 𝐷}
2321, 22syl6eq 2875 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
2420, 23jaoi 853 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷})
2519, 24impbid1 227 . . . 4 (((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2625ex 415 . . 3 ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
277, 26sylbi 219 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
286, 27pm2.61i 184 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  {cpr 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-v 3499  df-dif 3942  df-un 3944  df-nul 4295  df-sn 4571  df-pr 4573
This theorem is referenced by:  prel12g  4797  opthhausdorff  5410  preleqg  9081  pr2cv  39913
  Copyright terms: Public domain W3C validator